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Abstract. We consider the dynamic polaron model of the hydrated electron state on the basis of a system of three nonlinear partial
differential equations with appropriate initial and boundary conditions. A parallel numerical algorithm for the numerical solution
of this system has been developed. Its effectiveness has been tested on a few multi-processor systems. A numerical simulation of
the polaron states formation in water under the action of the ultraviolet range laser irradiation has been performed. The numerical
results are shown to be in a reasonable agreement with experimental data and theoretical predictions.

INTRODUCTION

Solvated (hydrated) electron states arise as a result of the radiolysis in condensed media [1]. Such states can be consid-
ered as the capture of an excess electron by a potential well formed as a result of the polarization of medium molecules
by the electron. Intensive attention to theoretical and experimental investigations of solvated electrons is related to the
fact that a number of chemical processes occurs with their participation in nonorganic and organic chemistry. Hy-
drated electrons, which are the strongest reducer in water, are of special interest. In biological systems, the hydrated
electron plays important role in processes of long-distance charge transfer. The dynamics of the absorption spectra
during hydrated-electron formation in irradiated water gives important information about its structure and the kinetics
of chemical reactions with its participation. Modern femtosecond spectroscopic methods allow one to understand a
mechanism of the formation of hydrated electrons excited in pure water by means of the laser irradiation.

In [2], the polaron model of hydrated electron was suggested. It is shown, that theoretical estimations of the laser
radiation absorption dynamics in ultra-violet range are in qualitative agreement with experimental data from [3]. In
[4, 5], the numerical method for solving the system of nonlinear partial differential equations describing the dynamical
polaron model, has been developed. The results of numeral simulation of the hydrated electron formation process are
in agreement with experimental data of absorption of light in the polarized water [6].

In this contribution, we describe a parallel numerical scheme on the basis of the partition method [7] for investi-
gation of the dynamical polaron model. The methodical calculations with the different amount of parallel processors
and knots of discrete grid on spatial coordinate have been performed to confirm an efficiency of the parallel algorithm.
Results of numerical simulation are presented in comparison with experimental data and theoretical estimations.

MATHEMATICAL MODEL

The theoretical approach is developed in [2] on a basis of the translation-invariant Landau – Pekar theory [8]. The
equations describing a time-dependence of the wave polaron function Ψ the polarization potential Φ, follow from the
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total energy functional of optical Pekar’s polaron. These equations are as follows [2]:

i�Ψ̇(�r, τ) = − �
2

2m0

ΔΨ(�r, τ) − eΦ(�r, τ)Ψ(�r, τ), (1)

1

4πω2c
ΔΦ̈(�r, τ) + γΔΦ̇(�r, τ) +

1

4πc
ΔΦ(�r, τ) + e|Ψ(�r, τ)|2 = 0. (2)

Here, � is the Plank constant, m0 – the effective electron mass, c = ε−1∞ −ε−1
0

, ε∞ and ε0 – the high-frequency and static

constants, e – the elementary charge, ω – the frequency of optical polarization medium oscillations, γ = ε̃/(ω2τ0) is a
relaxation coefficient, τ0 – the dielectric relaxation time, ε̃ – coefficient of dielectric permeability. We put

ΔΦ(�r, t) = θ(�r, τ), (3)

where θ has a physical sense of a density of polarized charge induced by electron. Thus, the equation (2) can be
transformed to the form:

1

4πω2c
θ̈(�r, τ) + γΔθ̇ +

1

4πc
θ(�r, τ) + e|Ψ(�r, τ)|2 = 0. (4)

Equations (1),(3),(4) determine the dynamical polaron model in the three-dimensional case. Substituting the expan-
sions of the functions Ψ(�r, τ) and Φ(�r, τ), θ(�r, τ) in terms of the spherical harmonics Ylms (θs, ϕs)

Ψ(�r, τ) =
∞∑

l=0

l∑
ms=−l

ψlms (r, τ)
r

Ylms (θs, ϕs),

Φ(�r, τ) =
∞∑

l=0

l∑
ms=−l

ϕlms (r, τ)
r

Ylms (θs, ϕs),

θ(�r, τ) =
∞∑

l=0

l∑
ms=−l

Θlms (r, τ)
r

Ylms (θs, ϕs)

into (1),(3),(4) and restricting our consideration to the spherically symmetric case of ms=l=0, we obtain the system
of spatially one-dimensional partial differential equations with respect to radial components ψ00(r, τ), ϕ00(r, τ) and
Θ00(r, τ) of functions Ψ,Φ and θ.

Then, from dimensional time τ and coordinate r we come to the dimensionless variables t and x by means of
the relations τ = t · t0 and r = x · r0, where r0 = r00 · a, a = 0.529 · 10−8 cm is the Bohr radius, r00 =

√
t00 =√

t0/tA0 = 164.64 is the scaling factor, t0 = 1/ω0, ω0 = 1.5246 · 1012 s−1 is the frequency of the medium oscillations,
and tA0 = 2.42 · 10−17s is the atomic time unit. Scaling is introduced to equalize the initial values of the physical
parameters which differ by ten orders or more. In this case, the integration interval over the spatial variable decreases
significantly (in accordance with the law x = r/r00), which simplifies computer simulation.

The relation between the effective mass m0 of the hydrated electron, the frequency ω of optical polarization
medium oscillations, the relaxation coefficient γ and the respective dimensionless parameters m̄, ω̄, γ̄ is determined
by the expressions m0 = m̄ · me (where me is the electron mass in vacuum), ω = ω̄/t0, and γ = γ̄/t0.

Final form of the system of equations is as follows (here and hereafter, the subscripts 00 of functions ψ00, ϕ00

and Θ00 are omitted): ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
i2m̄
∂

∂t
+
∂2

∂x2
+ 2m̄

r00

ε̃

ϕ(x, t)
x

]
ψ(x, t) = 0,

∂2

∂x2
ϕ(x, t) = Θ(x, t),[

∂2

∂t2
+ γ̄
∂

∂t
+ ω̄2

]
Θ(x, t) = −ω̄2 |ψ(x, t)|2

x
.

(5)

Boundary conditions are following:

ϕ(0, t) = ϕ′(∞, t) = 0, ψ(0, t) = ψ(∞, t) = 0, Θ(0, t) = Θ(∞, t) = 0. (6)

Equations (5) with boundary conditions (6) describe the evolution of the state given at the initial condition of time.
Here, ε̃ = 1.81, m̄ = 2.692, γ̄ = 2.145, and ω̄ = 1 are the dimensionless parameters of the model.
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NUMERICAL APPROACH

Finite Difference Scheme
For numerical solution, the system of differential equations (5) is replaced with that of difference equations on a
uniform discrete mesh with nodes xm = m × hx and tn = n × ht, where hx and ht are, respectively, the spatial stepsize
and the time stepsize. As a result of substitutions of well-known finite-difference formulas [9], we obtain a system of
difference equations with respect of ψn

m = ψ(xm, tn), φn
m = φ(xm, tn), Θn

m = Θ(xm, tn):

ψn+1
m − ψn

m

ht
= i

⎧⎪⎪⎨⎪⎪⎩σ
⎡⎢⎢⎢⎢⎣ψ

n+1
m+1
− 2ψn+1

m + ψn+1
m−1

2m̄h2
x

+
r00

ε̃

ϕn+1
m

m̄hx
ψn+1

m

⎤⎥⎥⎥⎥⎦ + (1 − σ)

[
ψn

m+1
− 2ψn

m + ψ
n
m−1

2m̄h2
x

+
r00

ε̃

ϕn
m

m̄hx
ψn

m

]⎫⎪⎪⎬⎪⎪⎭ ,

ϕn+1
m+1
− 2ϕn+1

m + ϕn+1
m−1

h2
x

= Θn+1
m , (m = 1, 2, . . . , l; n = 0, 1, 2, . . . ; σ = 0.5) , (7)

Θn+1
m − 2Θn

m + Θ
n−1
m

h2
t

+ γ̄
Θn+1

m − Θn
m

ht
+ ω̄2Θn+1

m = −ω̄2

∣∣∣ψn
m

∣∣∣2
m̄hx

,

Θ−1
m = −

∣∣∣ψ0
m

∣∣∣2
m̄hx

; Θ0
m = Θ

−1
m ; ϕn

0 = 0; ϕn
l = ϕ

n
l−1; ψn

0 = ψ
n
l = 0

To solve this system, we used the algorithm described in [4] making it possible to sequentially calculate Θ(xm, tn),
ϕ(xm, tn), and ψ(xm, tn) at nodes of the discrete mesh along the x axis under given initial conditions ψ0

m at each time
layer tn. The following sequence of actions is performed at each time-step with number n.

On the first step, we explicitly calculate Θn+1
m for all m from the third equation of the system (7):

Θn+1
m =

⎡⎢⎢⎢⎢⎢⎢⎣−−2Θn
m + Θ

n−1
m

h2
t

− γ̄−Θ
n
m

ht
− ω̄2

∣∣∣ψn
m

∣∣∣2
m̄hx

⎤⎥⎥⎥⎥⎥⎥⎦ ×
[

1

h2
t
+
γ̄

ht
+ ω̄2

]−1

. (8)

On the second step, we substitute found Θn+1
m to the second equation. The resulting system of N = l− 1 algebraic

equations

Â�X = �D; Â =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 c1 0 ... 0
a2 b2 c2 ... 0
0 a3 b3 ... 0
... ... ... ... ...
0 0 0 ... bN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; �D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1

d2

d3

...
dN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; �X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

χ1

χ2

χ3

...
χN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9)

with coefficients
am = 1, bm = −2, cm = 1, dm = Θm · h2

x, m = 2, ...,N − 1
b1 = 1, c1 = 0, d1 = 0, aN = −1, bN = 1, dN = 0.

(10)

is solved to calculate the χm = ϕ
n+1
m , m = 1, 2, . . . ,N.

Finally, on the third step, the values of ϕn+1
m are substituted to the first equation of system (7). The resulting

algebraic system (9) with coefficients

am =
iσ

2m̄h2
x
, cm =

iσ
2m̄h2

x
, bm =

1

ht
+

iσ
(
2 − 2hx

m̄r00ϕ
n+1
m

ε̃m̄

)

2m̄h2
x

,

dm =
ψn

m

ht
+

i(1 − σ)

(
2hx

m̄r00ϕ
n
mψ

n
m

ε̃m̄
+ ψn

m+1 − 2ψn
m + ψ

n
m−1

)

2m̄h2
x

, m = 2, ...,N − 1 ,

b1 = 1, c1 = 0, d1 = 0, aN = 0, bN = 1, dN = 0.

(11)
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is solved with respect to χm = ψ
n+1
m , m = 1, 2, . . . ,N. Then the procedure is repeated for the next value of n.

To start the calculations it is necessary to set the values of ϕ0
m. In the papers [5, 6] initial condition was varied

in order to reproduce the theoretically predicted and experimentally measured behavior of the physical characteristics
of the hydrated electron, depending on the time. In [4, 6], the calculations were also carried out, for methodological
purposes, with the initial conditions in the form of stationary solutions of (5).

Parallel Algorithm
Parallel implementation of the above numerical scheme has been done in [10] on the basis of MPI technology. Nu-
merical solution of three-diagonal algebraic equations (9) on the second and third steps of the algorithm is based on
the partition method [7]. The idea of this approach is as follows. The equations of system (9) of N linear algebraic
equations with a three-diagonal matrix Â are distributed between parallel processors (MPI-processes). Let P is the
number of parallel MPI-processes with ranges p = 0, 1, ..., P − 1. Let Δ = �N/P�.

Stage 1 (parallel). Transformation of Δ-blocks.

Each MPI-process of the range p < (N mod P) is working, in parallel regime, with lines of matrix Â with numbers
ip between imin = p · (Δ + 1) + 1 and imax = (p + 1) · (Δ + 1); parallel MPI-processes of the range p ≥ (N mod P)

transform lines of matrix Â with numbers ip from imin = p · Δ + (N mod P) + 1 to imax = (N mod P) + (p + 1) · Δ. At
each group of lines associated with p-process, the block of nonzero elements has a size of Δ × Δ or (Δ + 1) × (Δ + 1).

Each Δ-fragment is transformed from the three-diagonal structure to the form with non-zero elements only in the
main diagonal of the Δ-block and in vertical columns on the left and right borders of the block. For instance, in case
of Δ = 5 the matrix Â of the form

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 c1 0 0 0 0 0 0 0 0 ...
a2 b2 c2 0 0 0 0 0 0 0 ...
0 a3 b3 c3 0 0 0 0 0 0 ...
0 0 a4 b4 c4 0 0 0 0 0 ...
0 0 0 a5 b5 c5 0 0 0 0 ...

0 0 0 0 a6 b6 c6 0 0 0 ...
0 0 0 0 0 a7 b7 c7 0 0 ...
0 0 0 0 0 0 a8 b8 c8 0 ...
0 0 0 0 0 0 0 a9 b9 c9 ...
0 0 0 0 0 0 0 0 a10 b10 ...

... ... ... ... ... ... ... ... ... ... ...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)

is transformed to the following structure:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b′1 0 0 0 c′1 0 0 0 0 0 ...
a′2 b′

2
0 0 c′2 0 0 0 0 0 ...

a′3 0 b′3 0 c′3 0 0 0 0 0 ...
a′4 0 0 b′4 c′4 0 0 0 0 0 ...
a′

5
0 0 0 b′

5
c′

5
0 0 0 0 ...

0 0 0 0 a′
6

b′
6

0 0 0 c′
6
...

0 0 0 0 0 a′7 b′7 0 0 c′7 ...
0 0 0 0 0 a′8 0 b′8 0 c′8 ...
0 0 0 0 0 a′9 0 0 b′9 c′9 ...
0 0 0 0 0 a′10 0 0 0 b′10 ...

... ... ... ... ... ... ... ... ... ... ...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

The respective arithmetic operations are also carried out under the vector �D of system (9).

Stage 2 (serial). Formation of auxiliary matrix and solution of respective algebraic system.

From the lines ip = imin and ip = imax of each p-group, the auxiliary small-dimension matrix of three-diagonal
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structure is constructed in the 0-process. Respective system of algebraic equations has the form:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b′1 c′1 0 0 0 ... 0 0 0
a′

5
b′

5
c′

5
0 0 ... 0 0 0

0 a′
6

b′
6

c′
6

0 ... 0 0 0
0 0 a′10

b′
10

c′
10
... 0 0 0

... ... ... ... ... ... ... ... ...
0 0 0 0 ... ... a′N−4

b′N−4
c′N−4

0 0 0 0 ... ... 0 b′N c′N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

χ1

χ5

χ6

χ10

...
χN−4

χN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d′1
d′

5
d′

6
d′10
...

d′N−4
d′N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (14)

System (14) is numerically solved, in serial regime, by means of standard Thomas method with respect to elements χi
(i = imin and i = imax of each p-group). The solutions are scattered to all MPI-processes.

Stage 3 (parallel). Calculation of solutions in Δ-blocks.

Each p-process obtains solutions χi (i = imin and i = imax) from 0-process and calculates, recursively, all

remaining elements of the vector �X inside its block.

So, parallel part of the algorithm includes the transformation of elements of matrix Â to the form (13) and the
final calculation of the solutions inside each p-group. The serial part of the algorithm associated with the formation
of an auxiliary matrix in 0-process and the solution of respective system of algebraic equation, is carried out by the
process of range p = 0. Interaction between parallel processes is needed at the stage of construction of the auxiliary
algebraic system and for the scattering of solutions of this system to all processes.

Naturally, the calculations by the formula (8) in spatial nodes m are also distributed between parallel MPI-
processes.

NUMERICAL RESULTS

Efficiency of Parallel Optimization
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FIGURE 1. Left panel: dependence of the execution time on the number of parallel processors (MPI-processes) for the number of
x-nodes N = 10000, 15000, 20000. � – calculations on CICC-cluster (LIT, JINR, Dubna); � – calculations on the CPU-blade of
HybriLIT heterogenous cluster (LIT, JINR, Dubna) with N = 10000. Right panel: the same as in the left panel, but for the 4-core
Intel(R) Core(TM) i73630QM CPU

Obviously, a number of serial arithmetic operations at the stage 2 of the above algorithm is growing proportionally
P, i.e., extremely high acceleration of calculations on multi-processor systems is not available. Nevertheless, in the
case of relatively small number of parallel processes (P << N) one can expect a decreasing the execution time
proportionally 1/P.
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Numerical experiments with different number of computing nodes are made on the multiprocessor cluster CICC1.
Execution time versus the number of parallel computing nodes for different parameters for the finite-difference scheme
is shown by squares in Figure 1 (left panel) to demonstrate effectiveness of the parallel C++/MPI code.

We also made calculations with N = 10000 on the CPU-blade of the heterogenous cluster HybriLIT2. Results
are shown in Figure 1 (left panel) by triangles. It is seen that the execution time on both clusters is decreasing
hyperbolically while P < 13. The calculations with 12 ≤ P ≤ 50 [10] show that the further increasing of P is not
effective because of a growing share of serial calculations.

The same calculations have been performed on the Intel(R) Core(TM) i73630QM CPU (4 physical cores, 8
threads) in order to estimate a perspective of utilizing of this system in further numerical simulations. P-dependence
of the execution time is presented on the right panel of Figure 1. The execution time is decreased proportionally
1/P while P < 5. When P extends number of physical cores the dependence of execution time versus P is close to a
constant.

So, the maximal acceleration (10 times) is achieved in the case of 12 parallel processes on multi-CPU systems
CICC and HybriLIT, and the 4-time speed up is available on the 4-core one-CPU system.

Stationary Solutions and Integral of Energy
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FIGURE 2. Solutions of the eigenvalue problem (16), (17) with k = 0 (solid line), k = 1 (dashed), and k = 2 (dash-dotted). Left
panel: Ψk

st(x); right panel: Φk
st(x)

It can be shown that the initial conditions for system (5) in the form

ψ(x, t)|t=0 = Ψk(cos(λkξ) + i sin(λkξ)), Θ(x, t)|t=0 = −
Ψ2

k

x
,
∂

∂t
Θ(x, t)

∣∣∣∣∣
t=0
= 0, (15)

is time-independent, i.e., it does not change in time. Here Ψk is the eigenfunction of the eigenvalue problem

[
d2

dx2
− 2m̄λ + 2m̄

r00

ε̃

Φst(x)

x

]
Ψst(x) = 0,

d2

dx2
Φst(x) = −Ψ

2
st(x)

x
, 0 ≤ x ≤ ∞, (16)

1Central Information Computer Complex (CICC) of Laboratory of Information Technologies of the Joint In-

stitute for Nuclear Research (Dubna) includes more than 600 2-, 4-, 6-, and 8-Core Xeon processors, see

http://lit.jinr.ru/view.php?var1=comp&var2=ccic&lang=lat&menu=ccic/menu&file=ccic/linux/archit appar for details. Our calculations were

performed on the 80-units server of 2-processor Xeon X5650 units (6 cores per processor).
2Heterogenous cluster HybriLIT (Laboratory of Information Technologies of the Joint Institute for Nuclear Research, Dubna) consists of four

computational nodes including three nodes with graphic processors, see http://hybrilit.jinr.ru/en/ for details. Our calculations were performed on

the HybriLIT CPU-blade of two 12-core Intel Xeon E5-2695v2 processors.
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with the boundary conditions and the normalization condition as follows

Ψst(0) = 0 , Φst(0) = 0 , Ψst(∞) = 0 , Φ′st(∞) = 0 ,

∞∫
0

Ψ2
st(x)dx = 1 , (17)

where k – the number of zeroes of eigenfunction Ψst, λk – the corresponding eigenvalue, ξ – an arbitrary factor, which
we assumed to be π/4 in our calculations.

In order to verify the correctness of the numerical scheme, we obtained three solutions for problem (16), see
Figure 2, with the number of zeroes k = 0, 1, 2 using the continuous analogue of the Newton method [11]. The
corresponding eigenvalues are

λ0 = 3625.55; λ1 = 685.97; λ2 = 279.01.

Using these solutions, we constructed the initial conditions (15) and carried out the test calculations, as a result of
which we established that, when choosing the steps of the discrete mesh with respect to x and t, respectively, hx = 10−5

and ht = 10−7 the shapes of functions (15) remain unchanged in numerical simulation during a physically significant
interval of time (2 · 107 time steps). This confirms the correctness of the numerical approach and the corresponding
MPI/C++ code.

The energy integral is calculated in accordance with the formula

W(t) =
1

2m̄

∫ ∣∣∣∣∣∂ψ(x, t)
∂x

∣∣∣∣∣
2

dx − r00

ε̃

∫
ϕ(x, t) |ψ(x, t)|2

x
dx. (18)

Theoretical estimation of the ground state energy (case k = 0) is W = −3.637 eV [6]. Our numerical result is
W = −3.638 eV that is in good agreement with the theoretical prediction.

Calculation of Absorption and Radius
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FIGURE 3. Evolution of the light absorption by a hydrated electron for Ω = 1.984 eV, σ = 5 (left panel) and for for Ω = 1.512
eV, σ = 5.75 (right panel). The broken curve corresponds to the experimental data [3], the solid smooth curve – to our numerical
results, and the dashed curve – to the theoretical approximation [2]

To reproduce the experimental values of the intensity of light absorption by a hydrated electron, we chose the
initial conditions of the wave function ψ in the Gaussian form. The initial condition for the function Θ is analogous
to (15). The initial value of ϕ is solution of the second equation of system (5) with ψ(x, 0) on the right-hand side.
Accounting for the spherical symmetry and scaling factor, the function ψ at t = 0 is calculated as follows:

ψ(x, 0) = Fg(x̃)
√

4π x̃
√

r00, x̃ = x r00, (19)
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FIGURE 4. Dependence R(t) for the case of Ω = 1.984 eV, σ = 5 (left panel) and for Ω = 1.512 eV, σ = 5.75 (right panel)

where

Fg(x) =

(
2

π

)3/4
1

σ3/2
exp(−x2/σ2). (20)

The parameter σ was chosen to reproduce, in the computer simulation, the time dependence of the light absorption by
water measured in [3].

The expression used to calculate the intensity has the form [2]:

I(Ω, t) =
4Ω2γ2

s(
W(t)2 −Ω2

)2
+ 4Ω2γ2

s

, (21)

where γs = 0.38 eV is the width of the absorption band of the hydrated electron and Ω has the physical sense of the
light frequency of a scanning laser at which light is absorbed by the hydrated electron.

The calculations were carried out for Ω = 1.984 eV and for 1.512 eV. For these two cases, Figure 3 (reproduced
from [6]) shows the results of numerical simulation in comparison with the experimental data [3] and the theoretical
estimations [2].

The time-dependence of the hydrated electron size (radius), is determined (in cm) via the wave function Ψ by the
integral

R(t) = r0

∫
|ψ|2 r dr. (22)

The radius of hydrated electron in dependence of time is shown Figure 4 for Ω = 1.984 eV, σ = 5 (left panel) and for
Ω = 1.512 eV, σ = 5.75 (right panel). It can be seen that the value of the radius in both cases decreases with increasing
t. Initial value of 2.4÷ 2.6 · 10−8 cm as well as a final one of 1.5÷ 1.7 · 10−8 cm are close to the theoretical estimate of
2 ÷ 3 · 10−8 cm. Thus, the approach described above makes it possible to adequately reproduce the hydrated electron
radius and the dynamics of the light absorption by a hydrated electron.

SUMMARY

We show that the polaron model of formation of hydrated electron states on the basis of the nonlinear PDEs system,
provides realistic estimations of energy, radius and light absorbtion. Results of numerical simulations of light absorp-
tion process by photoexcited hydrated electrons are in reasonable agreement with the experimental data. The model
can be used for further calculations and predictions of the dynamics of polaron states in the aquatic medium and in
other condensed media. MPI-based parallel algorithm provides the ten-time acceleration in comparison with the serial
calculations.

100006-8 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:  159.93.14.8

On: Sat, 31 Oct 2015 07:00:26



ACKNOWLEDGMENTS

The work is partially supported by the Program “JINR – Bulgaria” and Russian Foundation for Basic Research (grants
13-01-00595, 13-01-00060 and 13-07-00256). The work of P.Kh.Atanasova is supported by project NI15-FMI-004.

REFERENCES

[1] A. K. Pikaev, The Solvated Electron in Radiation Chemistry, World University, Jerusalim, 1970.
[2] V. D. Lakhno (2007) Chem. Phys. Lett. 437, 198–202.
[3] F. H. Long, H. Lu, and K. B. Eisenthal (1990) Physical Revew Letters 64(12), 1469–1472.
[4] I. V. Amirkhanov, E. V. Zemlyanaya, V. D. Lakhno et al. (2011) Journal of Surface Investigation: X-ray,

Synchrotron and Neutron Techniques 5(1), 60–64.
[5] A. V. Volokhova, E. V. Zemlyanaya, V. D. Lakhno et al. (2014) Komp’yut. Issled. Modelir. 6(2), 253–261.

[in Russian]
[6] V. D. Lakhno, A. V. Volokhova, E. V. Zemlyanaya et al. (2015) Journal of Surface Investigation: X-ray,

Synchrotron and Neutron Techniques 9(1), 75–80.
[7] H. H. Wang (1981) ACM Trans. Math. Software 7, 170–183.
[8] S.I. Pekar, Research in Electron Theory of Crystals, USA Department of Commerce Washington 25 D.C.:

United States Atomic Energy Commision Division of Technical Information, 1963.
[9] I. S. Berezin and N. P. Zhidkov, Computational Methods, Vol. 2, Nauka, Moscow, 1959. [in Russian]

[10] A. V. Volokhova, E. V. Zemlyanaya, and V. S. Rikhvitskij (2015) Computational Methods and Programming
16, 281–289. [in Russian]

[11] I. V. Puzynin, I. V. Amirkhanov, E. V. Zemlyanaya et al. (1999) Phys. Part. Nucl. 30, 87.

100006-9 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:  159.93.14.8

On: Sat, 31 Oct 2015 07:00:26

http://dx.doi.org/10.1016/j.cplett.2007.02.035
http://dx.doi.org/10.1103/PhysRevLett.64.1469
http://dx.doi.org/10.1134/S1027451011010046
http://dx.doi.org/10.1134/S1027451011010046
http://dx.doi.org/10.1134/S1027451015010140
http://dx.doi.org/10.1134/S1027451015010140
http://dx.doi.org/10.1145/355945.355947
http://dx.doi.org/10.1134/1.953099

