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H I G H L I G H T S

• The collisional MD-method is first used to calculate the melting of a DNA molecule.

• The temperature dependence of the heat capacity has a broad peak.

• The presented approach makes it possible to investigate any composition DNA chains.
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A B S T R A C T

The most direct method of studying Peyrard-Bishop-Dauxois (PBD) model is the molecular dynamics simulation
method. The phase transition of (PolyA/PolyT)100 duplex into the denaturated state is studied in the PBD model
by the method of collisional molecular-dynamical modeling. The temperature dependencies of the total energy
and heat capacity of the duplex are calculated. Unlike other calculations, we have obtained a wide peak of heat
capacity in the region of temperature transition. The approach applied can be used to calculate the statistical
properties of the duplexes of any length and nucleotide composition as well as proteins and other macro-
molecules.

1. Introduction

In modeling molecular dynamics (MD) of biomacromolecules use is
made of interatomic potentials which are always limited in value in the
case of large distances between the atoms (Lennard-Jones, Coulomb,
Morse, etc. [1]). This involves some problems when calculating the
thermodynamic properties of biomacromolecules. Indeed, the statistical
sum always diverges for bounded potentials. This means that macro-
molecules should always be in denaturated state at arbitrarily low
temperature. However actually this is not the case since the con-
centration of molecules in a solution is finite which determines a
characteristic cutoff scale in the calculations of the statistical sum.

If we formally deal not with an ensemble, but with a single molecule
in an infinite solvent and the temperature is much lower than the de-
naturation temperature then potential energy always reaches a sta-
tionary quasi-equilibrium state which exists far longer than any ex-
periment concerned. This equilibrium state will naturally coincide with
the state which we would obtain dealing with an ensemble of mole-
cules.

Hence the problem of modeling is not a formal calculation of the
statistical sum over infinite time corresponding to the decomposed
system, but the calculation leading to just the quasi-equilibrium state
and finding of its thermodynamic characteristics.

A problem, however arises when the temperature appears to be
close to the value for which two characteristic times become equal (i.e.
the time during which potential energy reaches the stationary state and
the time of the system’s decomposition).

This situation arises, for example, in calculations of the thermo-
dynamic characteristics of DNA whose decomposition temperature not
far exceeds the room one. In this case a direct calculation of the sta-
tistical sum is impossible, since it leads to a decomposition of the mo-
lecule during a finite time.

This paper just deals with consideration of this problem. We de-
scribe a method which was effectively used to calculate the thermo-
dynamic characteristics of the molecule in the vicinity of the transition
and the transition per se.

Melting (denaturation) of DNA [1] occurs as a result of amplifica-
tion of temperature fluctuations. In this case both the chains move away
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from each other breaking the hydrogen bonds. The chains per se remain
nonseparable.

A popular dynamical model of DNA describing such behavior of the
duplex – the Peyrard-Bishop-Dauxois (PBD) model – simulates both the
behavior of breaking hydrogen bonds (Peyrard-Bishop model) with the
use of the Morse potential and the inseparability of each chain due to
Peyrard-Dauxois addition [2,3]. The thermodynamics behavior of this
model is in good agreement with experimental data [4–8]. By this
model the melting temperature is calculated by transfer-integral (TI)
method and molecular dynamics simulation method – 361.5 K. This
model is also used for bubbles search [9]. The nature of bubbles re-
search and the nature of heat capacity peak are the same – destruction
of hydrogen bonds.

2. Methods

In this model a chain of DNA nucleotides is presented as a system of
material points in a one-dimensional space whose motion is described
by classical motion equations:

= −m d x
dt
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where i= 1…N; N is the number of particles; m is the reduced mass of a
particle; x is the coordinate of deviation from the equilibrium position
between the nucleotides; U is the potential; t is the time.

According to the PBD model, each particle occurs in a potential
field:

= +U U WMorze

In the PBD model the interaction of the nucleotides in a pair is
described by the Morse potential:
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The interaction of neighboring pairs has the form:
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Consideration is given to a chain of 100 AT base pairs for the
parameter values: D= k=0.92 kcal/mole, α=4.45 Å−1,
a= 0.35 Å−1, ρ=0.5. m=300 a.m.u, used in [2].

In order to integrate the motion equations in the PBD model we will
use the velocity Verlet algorithm [10].

The temperature is taken into account in the model in the same
manner as in the method of all-atom molecular dynamics [11], with the
use of a collisional thermostat, where the medium in which the mod-
eled system occurs is simulated by point particles demonstrating the
Maxwell velocity distribution [12–14]. The velocity distribution cor-
responds to a certain temperature Tref. At random times virtual particles
of the medium elastically collide with the particles of the system. The
motion equations have the form:

∑= + −m dv
dt
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Here δ t( ) is the Dirac delta function, fik is a stochastic source of
force leading to jumps of the i-th atom velocity at random times tik. The
value of the velocity jump is calculated as a result of collision of two
point particles which had the velocities v (for a modeled particle) and
v0 (for a virtual particle) before the collision:

=
+

−Δv(t) 2m
m m
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0
0

Here m is the mass of a modeled particle, m0 is the mass of a virtual
particle. The velocities v0 are chosen from the Maxwell distribution.

Collisions take place in accordance with the Poisson process which
is determined by the only parameter λ0 – the mean value of the colli-
sions of an atom with medium particles per a unit of time, i.e. the
frequency of collisions.

We use our own one-dimensional molecular dynamics simulation
program. Using of standard MD-simulation program is inoperable in our
case. In three-dimensional packages the core forces are applied to cal-
culate forces, which depend on the square of the number of particles. In
our case calculations of forces and energies have linear computational
complexity.

MPI technology parallel programming was applied for calculating
512 independent implementations of the MD-experiment. Each im-
plementation has its own random sequence according to [15].

3. Results

In the course of modeling the temperature of the collisional ther-
mostat Tcurrent changed linearly at a constant velocity Vt= 0.1 K/ns,
Tcurrent = Tinitial +Vt * t; which yields the graph of the dependence of
the specific potential, kinetic and full energy on the time (see Fig. 1).

The initial temperature is chosen to be demonstrably less than the
lowest point of DNA denaturation. In our example Tinitial = 250 K.

The velocity of heating per a unit time is rather small so that we can
believe that on any rather small time interval the system occurs in
equilibrium. According to numerical experiments, the system’s relaxa-
tion – leveling off of the potential energy from temperature 0–250 K –
occurs for less than 1 ns.

Fig. 1 illustrates the temperature dependence of the energy of a
polynucleotide chain consisting of 100 base pairs in a single compu-
tational experiment (single realization). The kinetic energy changes
linearly in the range from 300 K to 400 K. The potential energy and, as a
consequence, the full energy have two near-linear regions and a tran-
sition region where the energy changes sharply. The time-averaged
kinetic energy depends linearly on time due to the collisional thermo-
stat.

The time dependence of the full and potential energy shown in
Fig. 1 describes the transition from the quasi-harmonic regime to the
denaturated one. The time t0 corresponds to the thermostat tempera-
ture TREF= 250 K+0.1 K/ns * t0. Averaging of these times over

Fig. 1. Time dependence of the specific full (EFULL) potential (U) and kinetic
(EK) energies for a single realization in the numerical experiment as the ther-
mostat temperature linearly increases TREF= 250 K+0.1 K/ns * t.
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realizations yields the transition temperature (see Fig. 2).
Actually Fig. 1 describes the energy gap whose order of magnitude

is kBT, where T is the temperature corresponding to the time of the
jump onset t0. It separates the denaturated state (to the right of the
jump) from the non-denaturated one (to the left of the jump). In dif-
ferent realizations the jump occurs at different times since the external
force (thermostat) acts randomly. The early transition illustrates a
larger energy gap, the late transition – a smaller one. The availability of
such a gap, as was mentioned above, is caused by the divergence of the
statistical sum for bounded potentials which presents computational
difficulties for the description of the melting process.

To analyze the macroscopic properties such as the heat capacity,
averaging over a large number of the systems (realizations) is required.

Fig. 2 illustrates the temperature dependence of the specific full
energy E(T) averaged over 512 realizations which accounts for one site
of a chain of N=100 nucleotide pairs.

Fig. 3 illustrates the temperature dependence of a specific heat ca-
pacity =CV

dE
dT for four different systems averaged over 512 realiza-

tions: a system of 25 particles (ρ=0.5), a system of N=50 particles
(ρ=0.5), a system of N=100 particles (ρ=0.5) and a system of
N=100 particles (ρ=2). In order to find a derivative, the full energy
function was approximated by two straight lines (before and after the
transition) and by the polynomial of degree 5 in the vicinity of the
transition. After approximation the derivative was found analytically.
The boundaries of the approximation region were found by the mini-
mization method so that the piecewise analytical function would have
the smallest squared deviation from the data of modeling.

The curves in Fig. 3 describe the process of DNA melting which
corresponds to a wide peak of the heat capacity. The value of the heat
capacity to the left of the peak is larger than that to the right of the peak
since on the left, the heat supplied to the chain is spent on the en-
hancement of the potential energy between neighboring Watson-Crick
pairs and on the enhancement of the potential energy of the chain plus
the kinetic energy. To the right of the peak when the chain is com-
pletely denaturated its further heating is not spent on the potential
energy between the nucleotides in pair. Numerically, the value to the
left of the peak of the heat capacity exceeds two universal gas constants
(2R), and to the right of the peak tends to R. Prior to the peak, we have
two potentials close to parabolic: the Morse potential at low tempera-
tures is close to parabolic, and the stacking interaction potential is close

to parabolic due to the tendency of the exponent to zero.
The temperature at which the peak is maximum corresponds to the

melting point of DNA. At this point the full energy of a homogeneous
duplex is equal to ND, where D is a constant of the Morse potential.

4. Discussion

In papers [2,16,17], as distinct from Fig. 3 and paper [18], stepwise
curves were obtained for the heat capacity. In the region of near-critical
temperatures in the PBD model the kinetic energy obtained from the
thermostat is spent on the enhancement of the potential energy of in-
ternucleotide interaction. This explains the smooth decrease of the heat
capacity after the peak. The transfer integral technique used in [2] to
calculate CV(T) yields a δ-shaped peak which corresponds to the results
of modeling of very long chains. As distinct from the transfer integral
technique, our approach can be used for the chains of any length and
any nucleotide composition. Besides the transfer integral technique is
limited by the Peyrard-Bishop model. Even simplest sophistication of
the model, such as consideration of the PBD model, does not allow any
analytical solutions of relevant integral equations which renders cal-
culation of actual systems impossible.

In paper [19] the thermodynamical functions were calculated by the
direct method for calculation of the statistical sum as a multi-
dimensional integral. As a rule, this method is essentially limited by the
chain length. The most serious limitation of the method, however, lies
in the fact that it enables investigations of only statistical thermo-
dynamic states, while our method makes possible investigations of
dynamical and statistical properties of the system.

The peak of the heat capacity received by us depends on the type of
a nucleotide sequence. This conclusion is consistent with paper [20].
When the number of physical particles is smaller the phase transition
occurs at lower temperature. This conclusion is consistent with paper
[21] which deals with a slightly modified model which is similar to our
model in the region of small oscillations.

The results obtained by our method is given in Fig. 4 which illus-
trates the temperature dependence of the mean coordinate value of a
nucleotide pair displacement from the equilibrium position over the
realizations. The extent of coincidence with results obtained from paper
[2] is rather high which suggests the adequacy of the calculations
performed. Some distinctions can be explained by the fact that in [2]

Fig. 2. Temperature dependence of the specific full energy averaged over 512
realizations.

Fig. 3. Specific heat capacity as a derivative of the full energy for four systems
((a) N=25, ρ=0.5; (b) N=50, ρ=0.5; (c) N=100, ρ=2; (d) N=100,
ρ=0.5).
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use was made of the Nose-Hoover thermostat while we used a colli-
sional thermostat.

The thermostats by Berendsen [22], Nose and Nose-Hoover [23] can
introduce some artifacts in the investigations. All these thermostats set
the mean temperature well. However as one very hot (or very cold)
particle emerges these thermostats in an effort to maintain the mean
temperature cool off (or heat) the system which occurs at a temperature
close to a certain predetermined value. After some time the tempera-
tures of all the particles of the system become balanced due to the in-
terparticle interaction but not due to the thermostat. As regards the
Morse potential, cold particles can emerge while attempting to get out
of the potential well. If a particle does not fall back to the well its ve-
locity is lower than that in a quasi-harmonic regime.

As distinct from the Berendsen and Nose-Hoover thermostats, the
collisional thermostat acts on each particle individually irrespective of
the temperature of the rest of the particles in the system which is more
consistent with reality.

Referring to paper [2] we notice that our mean coordinate values
coincide with their results, while the heat capacity does not. The reason
is that in paper [2] the coordinates are calculated by the molecular
dynamics method until the moment of denaturation and the heat ca-
pacity is given only by the transfer integral technique. We use the
molecular dynamics method to calculate the coordinates both before

the denaturation and after it.
The results obtained seem to be rather general and can be gen-

eralized to other systems. In particular, a wide peak of the heat capacity
was observed experimentally in proteins [24].
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