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It is shown that Cooper pairs are a solution of the bipolaron problem for model Fröhlich
Hamiltonian. The total energy of a pair for the initial Fröhlich Hamiltonian is found.

Differences between the solutions for the model and initial two-particle problems are

discussed.
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1. Introduction

The theory of Cooper pairs1 appeared earlier than the superconductivity theory

did.2 It forms the basis for treating the superconductivity occurrence process at

the microscopic level. Central to the theory is the mechanism of electron–phonon

interaction (EPI), which provides attraction between a pair of electrons. The same

mechanism is fundamental for the theory of bipolarons, i.e. two electrons bounded

by EPI.

Since a Cooper pair is considered to involve a lot of centers of other pairs, it

has never been treated as a bipolaron. This fact has dramatically affected the way

of developing the superconductivity theory of ordinary superconductors described

by BCS theory.

This situation is just analyzed in the paper.

2. Cooper Consideration

The problem of two electrons in a phonon field is originally solved in Cooper

pioneering paper.1 The fact that the system involves many particles does not affect

the validity of the two-particle approximation since, in view of Pauli principle, elec-

trons under the Fermi surface only slightly disturb the state of electrons occurring
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outside the Fermi surface. The aim of Cooper paper was to show that the two-

particle problem has a spectrum in which the ground state is separated from the

quasicontinuous spectrum by a gap and occurs below the Fermi level.

To solve this problem Cooper made an important simplifying assumption in-

stead of initial EPI he used a truncated Hamiltonian where nonzero interaction

exists only for the wave vectors of electrons occurring in a narrow layer of ener-

gies near the Fermi surface. Besides, in the model Hamiltonian, Coulomb repulsion

between paired electrons was not taken into account since it was thought to be

screened by rearrangement of the electron gas. The use of the truncated Hamilto-

nian automatically leads to the appearance of an isolated energy level, which occurs

inside the Fermi surface in the case of attracting EPI. The question of the energy

advantage of this level, i.e. the question of the total energy of the two-particle

system in a phonon field was not considered at all.

An answer to this question was given already in the many-particle BCS theory,

where with the use of the Cooper model Hamiltonian a many-electron wave function

composed of paired wave functions was constructed, which yielded a lower energy

value than the wave function without paired states did. The fact that the paired

wave functions involved in the BCS wave function had no concern with the paired

wave functions of the Cooper problem was of no importance. More likely, this caused

a problem in writing numerous manuals on microscopic superconductivity theory,

which traditionally start with a presentation of the Cooper two-particle problem.

Discovery of high-temperature superconductors demonstrated that the BCS the-

ory is not applicable in their case. This, in turn, requires a more detailed analysis of

the concept of Cooper pairs. Discontent with the Cooper theory gave birth to many

alternative theories of pairing. At present, however, there is no cause for discarding

the superconductivity mechanism on the basis of EPI.

3. Bipolaron Theory of Cooper Pairing

Thus, the initial Hamiltonian in the Cooper problem is Fröhlich Hamiltonian, which

in the coordinates of the center of mass has the form:

Ĥ = − ~2

2Me
∆R −

~2

2µe
∆r + U(r) +

∑
~ωka

+
k ak +

∑
k

2 cos
kr

2

(
Vke

ikRak + H.c.
)
,

(1)

where R, r are coordinates of the center of mass and relative coordinates of elec-

trons, respectively; Me = 2m, µe = m/2, m is the electron effective mass; a+k , ak
are operators of the phonon field; for a polaron medium Vk = (e/k)

√
2π~ω/ε̃V ,

ε̃−1 = ε−1∞ − ε10, ωk = ω is the phonon frequency, e is the electron charge; ε∞, ε0
are high frequency and static dielectric constants, V is the systems volume; U(r) is

the Coulomb interaction between electrons. Note that Cooper dealt with acoustical

phonons, which are actual for ordinary superconductors. For high-temperature su-

perconductors, the use of Fröhlich Hamiltonian for optical phonons is more suitable.

For Cooper, however, in view of his model approximation, this fact was immaterial.
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After elimination of the coordinates of the center of mass R via Heisenberg

transformation, with the use of Lee–Low–Pines transformation,3

Ŝ = exp

{∑
k

fk(ak − a+k )

}
, (2)

the energy of EPI, according to (1) takes the form:

Uint(r) =

〈
0

∣∣∣∣∣S−1
(

2
∑
k

Vk cos
kr

2

(
ak + a+k

))
S

∣∣∣∣∣ 0
〉

= 4
∑
k

Vkfk cos
kr

2
. (3)

Let us find an explicit form of Uint(r) in the limit of weak EPI, i.e. in the case which

was considered by Cooper1 (in the limit of strong EPI the form of Uint(r) is given

there.5). Since in this case the problem is solved within the perturbation theory,

where for a zero approximation, fk corresponding to weak-coupling polaron states

are chosen3:

fk = − Vk
~ωk + ~2k2/2m

, (4)

then with the use of (3) and (4) we express Uint(r) in the form:

Uint(r) = −4e2

ε̃r
(1− e−r/2r0) , (5)

where

r0 = (~/2mω)
1/2

, (6)

r0 has the meaning of a characteristic size in the polaron theory.

Expression (5) yields a straightforward conclusion made by Cooper: interac-

tion between the electrons is attracting and Schrödinger equation corresponding

to potential (5) always has a discrete level lying below the Fermi surface. The lat-

ter follows from the fact that for r → ∞ the electron interaction potential has a

Coulomb form which automatically provides the existence of a discrete level with

negative energy.

As was noted above, Cooper did not take into account Coulomb repulsion of

electrons. If it is taken into consideration, the total interaction potential Utot takes

the form:

Utot(r) = Uint(r) + U(r) . (7)

In the absence of screening U(r) = e2/ε∞r, the discrete level exists on condition

that 3ε0 > 4ε∞. In the general case for U(r), one should use the screening expres-

sion. For example, in Thomas–Fermi approximation U(r) = (e2/ε∞r) exp(−r/rTF),

where rTF is Thomas–Fermi radius. This changes the condition of the existence of

a discrete level making it less rigid. Note that Cooper discarded expression (5) and

used instead a simplified expression for Fourier components of the interaction po-

tential Uint(k) = v/V for EF ≤ ~2k2/2m ≤ EF + δ, v = const. and Uint(k) = 0, for
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other values of k, which leads to interaction Uint(r) ∼ sin(
√

2µeEF r/~)/r and the

energy of the discrete level ∆:

∆ = δ exp[−1/vρ(EF )] , (8)

which corresponds to the state radius r̄ ≈ ~2kF /m∆, where ρf (EF ) is the density

of the states at the Fermi level.

To answer the question of the value of the total energy in the Cooper problem,

let us consider the expression for the bipolaron total energy in the weak coupling

approximation4:

E = ∆E + 2
∑
k

V̄kfk +
∑

f2k + T̄ + Ū ,

T̄ =

〈
Ψ

∣∣∣∣− ~2

2µe
∆r

∣∣∣∣Ψ〉 , Ū = 〈Ψ|U(r)|Ψ〉 , (9)

V̄k = 2Vk

〈
Ψ| cos

kr

2
|Ψ
〉
,

where Ψ and fk are found from the condition of the minimum of the bipolaron

energy E with respect to Ψ and fk. With regard to the fact that the value of

recoil energy ∆E involved in (9) in the limit of weak coupling is equal to: ∆E =∑
(~2k2/2Me)f

2
k ,4 we express fk in the form:

fk = − V̄k
ωk + ~2k2/2Me

. (10)

We will seek for the minimum of (9), choosing the probe wave function Ψ in the

Gaussian form:

|Ψ(r)|2 =

(
2

πl2

)3/2

e−2r
2/l2 , (11)

where l is a variational parameter. Substituting (10), (11) into (9) and minimizing

the expression obtained with respect to l, we express E as:

E = − 1

24

[
16√
π
− 8√

2π

1

(1− η)

]2
α2~ω , (12)

l = 12
(
~2ε̃/me2

)/
α

[
16√
π
− 8√

2π

1

(1− η)

]
,

η = ε∞/ε0, α = (e2/~ε̃)
√
m/2~ω ,

(13)

where α is a constant of EPI, l has the meaning of the characteristic size of a

Cooper pair. From (12), (13) follows a condition of the existence of a discrete level

(i.e. existence of a bipolaron state) in the limit α→ 0 : ε0 > 1, 4ε∞, which is close

to the earlier obtained criterion.

Expression (12), though corresponding to a gain in the total energy of a Cooper

pair (i.e. bipolaron state), for α < 1, 4 corresponds to a metastable state. The
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reason is that the bipolaron state (12) is not stable with respect to its decay into

two individual polaron states with energy E = −2α~ω, which is always fulfilled in

the limit α→ 0.

Note that expression (12) obtained in the limit of weak coupling differs from the

bipolaron energy expression in the limit of strong coupling only in the numerical

coefficient.

4. Cooper Pairs and BCS

According to Cooper, only the electrons in the thin energy layer δ near the Fermi

surface are paired. Hence, by Cooper, only a small portion of electrons n′ ∼= (δ/EF )n

in metal is paired, where n is a concentration of electrons in metal.

On the contrary, the BCS theory suggests that at zero temperature all n elec-

trons should be paired. This paradox has not been clearly explained as yet.

An answer to this question can be obtained if we consider the initial many-

particle problem. To this end Fröhlich Hamiltonian should involve interaction of

all electrons with the phonon field and Coulomb repulsion of all electrons with

one another. No transformation can rearrange such a Hamiltonian into a set of

“effective” electron pairs. In Bogolubov theory,6 such an “effective” Hamiltonian

is just postulated. This follows from the fact that Hamiltonian of an individual

pair (1) will not commutate with the total many-particle Hamiltonian. This, in

turn, means that the state of an individual pair is not a motion integral. Hence,

resolution of the paradox lies in the fact that we have a fluctuating picture of

electron pairs (bipolarons) in a superconductor. In this picture, the portion of elec-

trons occurring in the paired state is usually small, since the life-time of the pairs

is short.

The fact that the BCS theory paints quite a different picture there all the

electrons are described by a stationary wave function composed of paired wave

functions indicates only that the choice of even a rough probe wave function yields

a gain in the total energy of the system which is surely a remarkable result. This

approach, however, turned out to be inapplicable in the case of high-temperature

superconductors.

One of the reasons for writing this paper is the opinion of an expert community

who express distrust to description of superconductivity on the basis of the bipo-

laron concept. From the above discussion, it appears that if this is the case, the

distrust is, in essence, expressed to the Cooper idea of pairing, since the latter is

nothing but a very rough solution of the bipolaron problem.

Presently, the polaron theory of superconductivity in its most consistent with

the experiment form is presented there.7
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