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Abstract. The phase transition of (PolyA/PolyT)100 duplex into the denaturated state is studied in the
Peyrard-Bishop-Dauxois model by the method of direct molecular-dynamical modeling. The temperature
dependencies of the total energy and heat capacity of the duplex are calculated. The convergence of the
dependence of heat capacity on the number of realizations is shown. The approach applied can be used to
calculate the statistical properties of the duplexes of any length and nucleotide composition.

1 Introduction

In modeling molecular dynamics of biomacromolecules use
is made of interatomic potentials which are always limited
in value in the case of large distances between the atoms
(Lennard-Jones, Coulomb, Morse, etc. [1]). This involves
some problems when calculating the thermodynamic
properties of biomacromolecules. Indeed, the statistical
sum always diverges for bounded potentials. This means
that macromolecules should always be in denaturated
state at arbitrarily low temperature. However actually this
is not the case since the concentration of molecules in a
solution is finite which determines a characteristic cutoff
scale in the calculations of the statistical sum.

If we formally deal not with an ensemble, but with a
single molecule in an infinite solvent and the tempera-
ture is much lower than the denaturation temperature
then potential energy always reaches a stationary quasi-
equilibrium state which exists far longer than any exper-
iment concerned. This equilibrium state will naturally
coincide with the state which we would obtain dealing
with an ensemble of molecules.

Hence the problem of modeling is not a formal calcula-
tion of the statistical sum over infinite time corresponding
to the decomposed system, but the calculation leading
to just the quasi-equilibrium state and finding of its
thermodynamic characteristics.

A problem, however arises when the temperature
appears to be close to the value for which two charac-
teristic times become equal (i.e. the time during which
potential energy reaches the stationary state and the time
of the system’s decomposition).

This situation arises, for example, in calculations
of the thermodynamic characteristics of DNA whose
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decomposition temperature not far exceeds the room one.
In this case a direct calculation of the statistical sum
is impossible, since it leads to a decomposition of the
molecule during a finite time.

This paper just deals with consideration of this problem.
We describe a method which can be effectively used to cal-
culate the thermodynamic characteristics of the molecule
in the vicinity of the transition and the transition per se.

Melting (denaturation) of DNA [1] occurs as a result
of amplification of temperature fluctuations. In this case
both the chains move away from each other breaking the
hydrogen bonds. The chains per se remain nonseparable.

A popular dynamical model of DNA describing such
behavior of the duplex — the Peyrard-Bishop-Dauxois
(PBD) model — simulates both the behavior of break-
ing hydrogen bonds (Peyrard-Bishop model [2]) with the
use of the Morse potential and the inseparability of each
chain due to Peyrard-Dauxois addition [3,4] and steel pop-
ular [5]. The thermodynamics behavior of this model is in
good agreement with experimental data. By this model
the melting temperature is calculated by transfer-integral
(TT) method and molecular dynamics simulation method —
361.5 K. This model is also used for bubbles search [6]. The
nature of bubbles research and the nature of heat capacity
peak are the same — destruction of hydrogen bonds.

The work studies in detail the dependence of the heat
capacity on the number of realizations and the con-
vergence of the maximum heat capacity to a smooth
peak.

2 Methods and results

In this model a chain of DNA nucleotides is presented
as a system of material points in a one-dimensional
space whose motion is described by classical motion
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equations:
dzl‘i dU
ms—t = 22
' dt? d’JJl
where 1 = 1,..., N; N is the number of particles; m is the

reduced mass of a particle; = is the coordinate of deviation
from the equilibrium position between the nucleotides; U
is the potential; ¢ is the time.

According to the PBD model, each particle occurs in a
potential field:

U= UMorze +W.

In the PBD model the interaction of the nucleotides in
a pair is described by the Morse potential:

UMorze(l‘i) = D(l _ e—amj)Q.

The interaction of neighboring pairs has the form:
k —a(zi+xi_1) 2
W(wi,zi1) = B} (1 + pe st ) (i —xim1)”.

Consideration is given to a chain of 100 AT base
pairs for the parameter values: D = k = 0.92kcal/mole,
a=445A"1 a=0.35A"", p=0.5, m = 300 a.m.u, used
in [3].

In order to integrate the motion equations in the PBD
model we will use the velocity Verlet algorithm [7].

The temperature is taken into account in the model in
the same manner as in the method of all-atom molecu-
lar dynamics [8], with the use of a collisional thermostat,
where the medium in which the modeled system occurs is
simulated by point particles demonstrating the Maxwell
velocity distribution [9-11]. The velocity distribution cor-
responds to a certain temperature Tier. At random times
virtual particles of the medium elastically collide with the
particles of the system. The motion equations have the
form:

dv;
i =F > fi ot —t;
m ar + . ik - 6( k)
dU
F,=— .
! d:vl

Here §(t) is the Dirac delta function, f;x is a stochastic
source of force leading to jumps of the ith atom velocity
at random times ¢;;. The value of the velocity jump is
calculated as a result of collision of two point particles
which had the velocities v (for a modeled particle) and vg
(for a virtual particle) before the collision:

Av (1) =20

=——(vo () —v (¥)).
20—y (1)~ (1)

Here m is the mass of a modeled particle, my is the mass
of a virtual particle. The velocities vy are chosen from the
Maxwell distribution. This equation follows from the law
of conservation of energy and momentum.
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Fig. 1. Time dependence of the specific full (ErurL) potential
(U) and kinetic (Ex) energies for a single realization in the
numerical experiment as the thermostat temperature linearly
increases Trer = 250K + 0.1K/ns X t.

Collisions take place in accordance with the Poisson
process which is determined by the only parameter \g —
the mean value of the collisions of an atom with medium
particles per a unit of time, i.e. the frequency of collisions.

Brownian dynamics is a special case of collisional
dynamics (collisional thermostat) when the mass of vir-
tual particles tends to zero and collision frequency tends
to infinity. This conclusion was shown in [9-11]. Analog
of friction is the product of mass of virtual particles and
collision frequency.

In the cource of modeling the temperature of the colli-
sional thermostat Tcurrent changed linearly at a constant
rate Vi = 0.1 K/ns, Teurrent = Tinitial + V2 X t; which yields
the graph of the dependence of the specific potential,
kinetic and full energy on the time (see Fig. 1).

The initial temperature is chosen to be demonstrably
less than the lowest point of DNA denaturation. In our
example Tinitial = 250 K.

The velocity of heating per a unit time is rather small so
that we can believe that on any rather small time interval
the system occurs in equilibrium. According to numerical
experiments, the system’s relaxation — leveling off of the
potential energy from temperature 0 K to 250 K — occurs
for less than 1ns.

Figure 1 illustrates the temperature dependence of the
energy of a polynucleotide chain consisting of 100 base
pairs in a single computational experiment (single real-
ization). The kinetic energy changes linearly in the range
from 300 K to 400 K. The potential energy and, as a con-
sequence, the full energy have two near-linear regions and
a transition region where the energy changes sharply. The
time-averaged kinetic energy depends linearly on time due
to the collisional thermostat.
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Fig. 2. Temperature dependence of the specific full energy
averaged over 512 realizations.

The time dependence of the full and potential energy
shown in Figure 1 describes the transition from the
quasi-harmonic regime to the denaturated one. The
time ty corresponds to the thermostat temperature
Trer = 250K + 0.1K/ns x ty. Avaraging of these times
over realizations yields the transition temperature (see
Fig. 2).

Also we increase the time of simulation (decreasing the
constant rate Vi) for different temperature and obtain the
results which are close to our previous result.

Actually Figure 1 describes the energy gap whose order
of magnitude is kgT', where T is the temperature corre-
sponding to the time of the jump onset ty. It separates
the denaturated state (to the right of the jump) from the
non-denaturated one (to the left of the jump). In different
realizations the jump occurs at different times since the
external force (thermostat) acts randomly. The early tran-
sition illustrates a larger energy gap, the late transition —
a smaller one. The availability of such a gap, as was men-
tioned above, is caused by the divergence of the statistical
sum for bounded potentials which presents computational
difficulties for the description of the melting process.

To analyze the macroscopic properties such as the heat
capacity, averaging over a large number of the systems
(realizations) is required.

Figure 2 illustrates the temperature dependence of the
specific full energy E(T) averaged over N = 512 real-
izations which accounts for one site of a chain of 100
nucleotide pairs.

Figure 3 illustrates the temperature dependence of a
specific heat capacity Cy = % for four different systems
averaged over 512 realizations: a system of 25 particles
(p = 0.5), a system of 50 particles (p = 0.5), a system
of 100 particles (p = 0.5) and a system of 100 particles
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Fig. 3. Specific heat capacity as a derivative of the full energy
for four systems by approximation.

(p = 2). In order to find a derivative, the full energy
function was approximated by two straight lines (before
and after the transition) and by the polynomial of degree
5 in the vicinity of the transition. After approximation
the derivative was found analytically. The boundaries of
the approximation region were found by the minimization
method so that the piecewise analytical function would
have the smallest squared deviation from the data of
modeling.

To search for the derivative, the total energy function
was approximated by two straight lines (before and after
the transition), as well as a fifth-degree polynomial in the
transition region. After approximation, the derivative was
found analytically. The boundaries of the approximation
areas were found using the minimization method, so that
the obtained piecewise-specified analytical function has
the smallest square of deviation from the simulation data.

The curves in Figure 3 describe the process of DNA
melting which corresponds to a wide peak of the heat
capacity. The value of the heat capacity to the left of the
peak is larger than that to the right of the peak since on
the left, the heat supplied to the chain is spent on the
enhancement of the potential energy between neighbor-
ing Watson-Crick pairs and on the enhancement of the
potential energy of the chain plus the kinetic energy. To
the right of the peak when the chain is completely denat-
urated its further heating is not spent on the potential
energy between the nucleotides in pair. Numerically, the
value to the left of the peak of the heat capacity exceeds
two universal gas constants (2R), and to the right of the
peak tends to R. Prior to the peak, we have two potentials
close to parabolic: the Morse potential at low tempera-
tures is close to parabolic, and the stacking interaction
potential is close to parabolic due to the tendency of the
exponent to zero.
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Fig. 4. Heat capacity with a different number of realizations.
— 16 realizations, — 128 realizations, — 512 realizations,. . . 2048
realizations.

The temperature at which the peak is maximum corre-
sponds to the melting point of DNA. At this point the full
energy of a homogeneous duplex is equal to ND, where D
is a constant of the Morse potential.

The choice of realizations number is not accidental. As
the number of realizations increases, the heat capacity
curve tends to an even hill.

Figure 4 shows the convergence of the calculation results
from the number of implementations. With the number of
implementations 16, there is a jagged curve. With 128
implementations, the number of local maxima decreases.
At 512 implementations, the curve takes the form. The
shape of the curve at 2048 realizations qualitatively and
quantitatively resembles the previous case. Therefore, we
assume that 512 realizations are sufficient for calculating
the heat capacity curve.

3 Discussion

In papers [3,12,13], as distinct from Figure 3 and paper
[14], stepwise curves were obtained for the heat capacity.
In the region of near-critical temperatures in the PBD
model the kinetic energy obtained from the thermostat
is spent on the enchancement of the potential energy
of internucleotide interaction. This explains the smooth
decrease of the heat capacity after the peak. The transfer
integral technique used in [2] to calculate Cy (T') yields a 6-
shaped peak which corresponds to the results of modeling
of very long chains. As distinct from the transfer integral
technique, our approach can be used for the chains of any
length and any nucleotide composition. Besides the trans-
fer integral technique is limited by the Peyrard-Bishop
model. Even simplest sophistication of the model, such
as consideration of the PBD model, does not allow any
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Fig. 5. Temperature dependence of the mean coordinate value
(black curve). The length of the chain is 100 nucleotides,
the number of realizations is 100. The circles represent the
data of molecular modeling with the use of the Hose-Hoover
thermostat from paper [3].

analytical solutions of relevant integral equations which
renders calculation of actual systems impossible.

In paper [15] the thermodynamical functions were cal-
culated by the direct method for calculation of the
statistical sum as a multidimensional integral. As a rule,
this method is essentially limited by the chain length. The
most serious limitation of the method, however, lies in
the fact that it enables investigations of only statistical
thermodynamic states, while our method makes possible
investigations of dynamical and statistical properties of
the system.

The peak of the heat capacity received by us depends
on the type of a nucleotide sequence. This conclusion is
consistent with paper [16]. When the number of physical
particles is smaller the phase transition occurs at lower
temperature. This conclusion is consistent with paper [17]
which deals with a slightly modified model which is similar
to our model in the region of small oscillations.

Comparison of the results obtained by our method and
those obtained by TI-method from paper [2] is given in
Figure 5 which illustrates the temperature dependence of
the mean coordinate value of a nucleotide pair displace-
ment from the equilibrium position over the realizations.
The extent of coincidence is rather high which suggests
the adequacy of the calculations performed. Some distinc-
tions can be explained by the fact that in [2] use was made
of the Nose-Hoover thermostat while we used a collisional
thermostat.

The thermostats by Berendsen [18], Nose and Nose-
Hoover [19] can introduce some artifacts in the investi-
gations. All these thermostats set the mean temperature
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well. However as one very hot (or very cold) particle
emerges these thermostats in an effort to maintain the
mean temperature cool off (or heat) the system which
occurs at a temperature close to a certain predetermined
value. After some time the temperatures of all the parti-
cles of the system become balanced due to the interparticle
interaction but not due to the thermostat. As regards the
Morse potential, cold particles can emerge while attempt-
ing to get out of the potential well. If a particle does not
fall back to the well its velocity is lower than that in a
quasi-harmonic regime.

As distinct from the Berendsen and Nose-Hoover ther-
mostats, the collisional thermostat acts on each particle
individually irrespective of the temperature of the rest of
the particles in the system which is more consistent with
reality.

Referring to paper [3] we notice that our mean coor-
dinate values coincide with their results, while the heat
capacity does not. The reason is that in paper [2] the coor-
dinates are calculated by the molecular dynamics method
until the moment of denaturation and the heat capacity is
given only by the transfer integral technique. We use the
molecular dynamics method to calculate the coordinates
both before the denaturation and after it.

The results obtained seem to be rather general and can
be generalized to other systems. In particular, a wide peak
of the heat capacity was observed experimentally in pro-
teins [20] and in simulations of lattices with motion of
particles in a plane [21].

Also we can see the PBD model is not applicable
to short DNA chains. This result is consistent with
[22].
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