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Abstract. It is shown that in DNA-like molecules containing added, excess charges, such as electrons and
holes (cation-radicals), it is possible by highly energetic, local, mechanical excitation at definite places
of the chain to control the creation of breathers/bubbles and hence to control the long-range transfer of
charges moving along the chain in a definite given direction with no external electric field needed.

1 Introduction

The study of physicochemical properties, local fluctua-
tions of DNA structure and charge transfer in this poly-
mer molecule is of great interest for molecular biology and
biophysics [1–7], as well as for the relatively new science
of nanobioelectronics [8,9]. The DNA molecule is a poly-
mer consisting of two chains which usually form a right-
handed double helix – α-duplex. The spatial structure of
α-duplex is provided by hydrogen bonds (H-bonds) join-
ing nitrogenous bases of different chains and by partial
delocalization of π-electrons between neighboring bases of
one chain. Today there are possibilities to manipulate not
only the sequence of nucleotides but also to create locally
excitations such as oscillations, kinks, etc. Here we show
how to control properties of DNA open state like bubbles
and some processes such as long-range electron transfer
(ET) by local excitations.

The critical temperature, local stability, electric con-
ductivity and other properties of a DNA duplex depend
greatly on its primary structure, i.e., a linear sequence of
bases, see for example [10–16]. In the study of DNA prop-
erties simple mathematical models in which each base pair
is described by a small number of properties are useful
to study the processes of mechanical excitations leading
to energy transfer. The energy localization leads to lo-
cal destabilization of the DNA structure and emergence
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of localized openings of DNA duplex, i.e., local unwind-
ing of its chains [10]. This property was often used to
explain the results of experiments on DNA with differ-
ent nucleotide sequences [14,15,17,18]. We will show here
for a rather simple model that it is possible to control
the creation of breathers/bubbles and polarons by local
excitations generated from outside. Further we will show
that the moving of excess charges on the lattice can be
influenced and controlled. In order to control the creation
and the direction of propagation of the excitations and
the final charge transport, a special way of local periodic
perturbations including appropriate phase shifts between
neighboring units is proposed.

Radial models are used to investigate the processes
of transfer and localization of the mechanical energy of
radial displacements of DNA chains. As a critical ampli-
tude is reached, these displacements lead to complete dis-
sociation of a duplex into individual chains. Transfer and
nonlinear packing of the energy of radial displacements
of DNA chains cause many effects observed experimen-
tally. Among them is an abrupt character of transverse
micromechanical denaturation [19,20]. Other examples are
a great heterogeneity of equilibrium constants for the het-
erogeneous duplex local opening, shown in experiments
on promoter DNA fragments [14,15] and molecular bea-
cons, studied by FCS method [21]: see also analysis of
experiments performed in reference [10]. In this paper we
shall show that in DNA containing excess charges, such
as electrons and holes (cation-radicals) the transfer of the
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Fig. 1. Structure of a single DNA chain illustrating arrange-
ment of its sugar-phosphate backbone and chains’ direction.

mechanical energy of radial displacements of DNA chains
is accompanied by the transfer of the excess charges along
the molecule axis. This may be used in construction of
DNA-based devices.

In Section 2 we schematically present the DNA struc-
ture and illustrate peculiarities of the description of its
dynamics associated with different degrees of freedom of
the bases in the models considered. For clarity we also de-
scribe in detail experimental evidence of the influence of
energy transfer and localization in the duplex on its stabil-
ity. The aim of this section is to substantiate the choice of
the model relying on the experimental material accumu-
lated thus far. In Section 3 we recall the Peyrard-Bishop-
Dauxois-Holstein Hamiltonian model [22] and derive the
dimensionless differential equations for the motion of the
sites of a nucleotide chain and Schrödinger equation for
the components of a discrete wave function of an electron
interacting with the chain. There we also substantiate the
choice of boundary and initial conditions for the dynami-
cal regimes analyzed in the paper. In Section 4 we present
the results of investigation of nonlinear oscillations and
waves in DNA provoked by a short pulse excitation of
the particle velocity and their interaction with an added
excess charge. In Section 5 the results of similar investi-
gations are given for the case of exciting the chain by a
harmonic external excitation of the particles’ velocities.
The interaction of a polaron with breathers in DNA is
considered in Section 6. A summary results found is given
in Section 7.

2 Theoretical and experimental basis
of the model chosen

A polymer DNA chain consists of a sugar-phosphate back-
bone joining up nitrogenous bases – adenine, guanine,
cytosine and thymine. The backbone structure is shown
in Figure 1: grey rectangles contain atoms N of nitroge-
nous bases joined by a glycosidic linkage with N-1’ atom
of the furanose ring. The segment consisting of deoxyri-
bose, phosphate residue and a nitrogenous base is called
a nucleotide.

Figure 1 also shows the directions of DNA chains –
from the 5’-end to the 3’-end. The sequence of nucleotides
in these directions is called a primary structure. The
chains form a duplex in which adenine is held together
with thymine by two H-bonds and guanine with cytosine –

Fig. 2. Scheme of complementary interaction in DNA base
pairs. Complementary H-bonds are shown in dashed lines. Here
the arrow indicating the chain’s direction in Figure 1 is per-
pendicular to the plane of the figure.

Fig. 3. Schematic representation of the structure of a DNA
duplex.

by three H-bonds. This type of parallel bonding is called
complementary while the basic bonding – a complemen-
tarity. The structure of bases and their complementary
interaction are shown in Figure 2. The fragments of de-
oxyribose residue are shown in grey rectangles.

The chains of the duplex are joined in antiparallel and
form a right-handed helix. The DNA geometry, its diam-
eter and the size of a turn are shown in Figure 3. Letters
S stand for deoxyribose residues and letters P – for phos-
phates. In radial models the degree of freedom is length-
ening of the bundle of complementary H-bonds shown in
Figures 2 and 3 by dashed lines.

The bases of one chain of a duplex reside in nearly
parallel planes and are joined with one another by specific
non-covalent bonds. Since the bases in such a structure
resemble a stack of coins their arrangement in a single
chain is often called a stack, while the bonds supporting
the structure – stacking interactions.

Overlapping of π-orbitals in a stack leads to par-
tial delocalization of π-electrons of nitrogenous hete-
rocycles [23,24]. Since a stack is a π-conjugated sys-
tem, cation-radicals can migrate in a duplex [25]. It
plays an important role both in repairing DNA dam-
ages [26–28] and in the processes of carcinogenesis [29,30]
and mutagenesis [16,29,31].

Apart from the influence on the charge transfer, a lo-
cal transient duplex unwinding plays a major role, for
example, in facilitating the DNA twisting when it is
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packed into nucleosomes [32,33] or else in formation of
ring molecules [32,34,35]. Even more important field of
investigation is the study of interaction of different DNA
open states with enzymes. In particular, it was experimen-
tally proved that flip-out of bases from Watson-Crick helix
is primary in promoter recognition in duplex DNA [3,4].
For the case of the radial duplex openings this question is
controversial since experimental proofs of the key role of
DNA dynamics in this case are less direct [14,15].

There is considerable experimental evidence testifying
the fact that the strength of H-bonds and stacking inter-
action is by no means the only factor determining the ki-
netics of the local transient duplex openings. A great con-
tribution into destabilization of the double helix is made
by the processes of transfer and localization of the en-
ergy of nonlinear excitations of the duplex chains. The
first evidence of the contribution of these processes was
obtained in experiments on micromechanical DNA unzip-
ping by stretching the complementary chains at one of
its ends. In this case H-bonds break successively while the
chains remain undamaged. In experiments by Bockelmann
et al. mechanical unzipping of a homogeneous DNA oc-
curred step-wise and involved some pronounced “stick-slip
cycles” [19,36]. On a scale of several tens of base pairs the
“force versus displacement” curves correlated well with
the relation of adenine-thymine and cytosine nucleotide
pairs’ concentrations. However as the technology of opti-
cal tweezers was used which improved the resolution to
the scale of tens of base pairs and even less, experimental-
ists faced with a considerable influence of non-equilibrium
processes on the duplex resistance [20].

Subsequently sharp fluctuations of the mechanical re-
sistance and its dependence on the rate of microme-
chanical unzipping were described with the use of a
modified simple radial Peyrard-Bishop-Dauxois (PBD)
model [37,38]. The authors showed a simple mechanism of
arising fluctuations of DNA mechanical resistance upon
unzipping. Due to non-uniform localization of the chain
oscillation energy in DNA there are always short-living
“opened” regions. Little energy if any is required for their
unzipping, therefore mechanical resistance of the duplex
in these regions sharply decreases until the front separat-
ing native DNA and its unzipped part again runs into
a “closed” region where H-bonds are undamaged. This
mechanism illustrates an important fact: “stick-slip cy-
cles‘” could be observed even in unzipping of a homopoly-
mer DNA [37]. In other words, the energy transfer and
localization are independent of whether DNA is homoge-
neous or heterogeneous.

Nevertheless, the effect of the energy transfer and lo-
calization is more pronounced in the open states’ dynamics
in a heterogeneous DNA. In 2004 Choi et al. tried to prove
the antecedence of open states’ dynamics in DNA-enzyme
interactions and obtained rather unexpected results [14].
Using biochemical methods, the authors measured rela-
tive probability of the open states’ emerging in different
regions of some heterogeneous DNA. It turned out that the
difference of equilibrium constants for duplex opening can
be as large as two orders of magnitude and greater [14,15].

Moreover, replacement of just two adjacent base pairs at
one point (instead of a wild type promoter a mutant one
was taken) brought about a considerably increased sta-
bility in this point, but substantially decreased stability
in the region separated from it by a distance of tens of
nucleotide pairs.

The only approach which enabled one to reproduce
these effects at least in part was Langevin dynamics in
the already mentioned PBD model [14,15]. Some attempts
to quicken calculations by passing on to investigation of
equilibrium properties of PBD model actually led to a loss
of agreement with experimental data [39–42]. In these pa-
pers the ratio between the minimum and maximum equi-
librium constants in the duplex opening reaction did not
exceed 0.15; the “long-range effect” of mutation was not
observed either. The same situation occurred in passing
on to simplified Langevin approach in which computing
time was reduced due to the substantially increased fric-
tion coefficient [43].

Another important proof of the fact that the processes
of energy transfer and localization have an effect on the
DNA dynamics is the anomalously low stability of the so-
called molecular beacons, thoroughly investigated in ref-
erence [21]. Analysis of these experiments is presented in
detail in Sections 4.3 and 5.3 of review [10], therefore we
will not dwell upon this problem here. Briefly speaking, in
addition to many worthy experimental facts, the authors
of reference [21] incidentally obtained indirect evidence for
localization of the energy of nonlinear breathers in bent
DNA regions. This effect was first predicted in PBD model
seven years earlier [44]. The contribution of this mecha-
nism into the duplex destabilization is described in Sec-
tion 5.3.3 of paper [10].

The experimental facts cited above suggest that one of
the main requirements for the DNA mechanical model is
taking into account the energy localization which leads to
the onset of high-amplitude nonlinear excitations. In great
detail this problem is considered in reference [10]. This is
successfully realized in PBD model. Therefore investiga-
tions of the model and its various modifications hold a
prominent place among many works devoted to theoreti-
cal study of the duplex dynamics [45–52].

3 Peyrard-Bishop-Dauxois-Holstein model

Following the above cited arguments we will investigate
the properties of the charge transfer in DNA in the frame-
work of quantum-classical model which is a combination
of Peyrard-Bishop-Dauxois [53] and Holstein models [54].
Instead of a simple description of the dynamics of excita-
tions arising in a chain of nucleotide pairs (carried out in
Holstein model) we use a more complete model suggested
in reference [53]. The model is known as Peyrard-Bishop-
Holstein model [22].

The interaction of the complementary nucleotides in
Watson-Crick pair is called the “on-site” interaction. To
describe this interaction we use a nonlinear Morse poten-
tial. The sites belonging to one helix are considered to be
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units of a quasi-one-dimensional chain bound by nonlin-
ear forces (stacking interactions). The stacking potential
in the case of very small and very large deviations of the
sites from the equilibrium position being nearly parabolic,
though with different values of the elastic constant [55].
The Hamiltonian of the model in this case can be pre-
sented as

Ĥ =
N∑

n

αn |n〉〈n| +
N∑

n,m

vnm |n〉〈m|

+ χ
∑

n

(wn − vn) |n〉〈n| +
∑

n

{
1
2
m

(
ẇ2

n + v̇2
n

)

+
κ

2

[
(wn − wn−1)

2
(
1 + ρe−η(wn+wn−1)

)

+ (vn − vn−1)
2
(
1 + ρeη(vn+vn−1)

)]
+ U (wn − vn)

}
,

(1)

where αn is the charge energy at the nth site, vnm are
coefficients of “hopping” integrals, χ is a charge-vibration
coupling constant, wn, vn are displacements of individual
nucleotides in the nth nucleotide pair from the equilib-
rium position, m is the nucleotide mass. Dot stands for the
time derivatives of wn and vn. The quantity U (wn − vn)
involved in (1) determines interaction of nucleotides in a
pair. The middle term in the brackets in (1) is responsible
for the interaction between neighboring nucleotides (stack-
ing interaction). Its parameters are an elasticity coefficient
κ and correction coefficients ρ and η determining nonlinear
deviation of stacking-potential from parabolic form in the
case of intermediate values of nucleotide displacements.

If we seek a solution corresponding to Hamiltonian (1),
in the form

|Ψ〉 =
∑

n

cn (t) |n〉, (2)

and introduce new variables

xn =
wn + vn√

2
, yn =

wn − vn√
2

, (3)

then, the equations for the motion of nucleotide pairs and
discrete Schrödinger equation for a charge, an electron and
a hole, neglecting small values xn (in view of symmetry of
the motion of nucleotides in the pair wn ≈ v−n), may be
written as:

m
d2yn

dt2
+

∂

∂yn

∑

n

{κ

2

[
(yn − yn−1)

2
(
1 + ρe−η(yn+yn−1)

)

+ (yn+1 − yn)2
(
1 + ρe−η(yn+1+yn)

)]
+ U (yn)

}

+
√

2χ |cn|2 = 0, (4)

i�
dcn

dt
= αncn +

∑

m

vnmcm +
√

2χyncn. (5)

Therefore por Poly-G/Poly-C homogeneous chain in the
nearest neighbor approximation we get (αn ≡ 0)

i�
dcn

dt
= −v (cn+1 + cn−1) +

√
2χyncn. (6)

Assuming that the on-site potential in nucleotide pair can
be approximated by the Morse potential [37,38,53]

U (yn) = D
(
e−2σyn − 2e−σyn

)
, (7)

we obtain

d2qn

dt2
= e−qn

(
e−qn − 1

)
+ ω2

bond

× [(qn+1−2qn+qn−1)+ρf (qn−1,n,n+1)]

− χh |cn|2 , (8)
dcn

dt
= −iτe (cn+1 + cn−1) − iχelqncn, (9)

f (qn−1,n,n+1) = (qn−1 − qn)e−η′(qn+qn−1)

× [1 − 2η′ (qn − qn−1)]

+ (qn+1 − qn)e−η′(qn+qn+1)

× [1 − 2η′ (qn+1 − qn)] . (10)

Here the elasticity coefficient σ characterizes the bond
stiffness, qn = σyn is a normalized displacement, τ =
ωM t is dimensionless time, ωM is the frequency of lin-
ear oscillations in an individual site (ω2

M = 2σ2D/m),
ωbond =

(
κ/2σ2D

)1/2 is the frequency of oscillations of
sites in a chain normalized to ωM , χh =

√
2χ/2σD and

χel =
√

2χ/�ωMσ = χh (2D/�ωM) are dimensionless pa-
rameters of bonding between the electron and the lattice,
τe = ν/�ωM is a dimensionless parameter determining the
ratio between the characteristic times of the evolution of
an electron wave function and the dynamics of excitations
in a lattice, � is Planck constant, function f(qn−1,n,n+1)
characterizes the nonlinear part of the bonding force be-
tween the sites, η′ = η/

√
2.

In linear approximation for χh = 0 and ρ = 0 it follows
from (10) the equation

d2qn

dt2
= −qn + ω2

bond [(qn+1 − 2qn + qn−1)] , (11)

and the dispersion relation

ω2 = 1 + 4ω2
bond sin2 (k/2) . (12)

The latter suggests that the phonon spectrum is in the
range of the frequencies between 1 and

√
1 + 4ω2

bond. Here
k is a dimensionless wave number on the scale determined
by the distance between neighboring sites along the chain
axis.

The equations (8)–(10) with specific initial conditions
(see below) and periodic boundary conditions were solved
numerically by using a fourth-order Runge-Kutta algo-
rithm. The required accuracy is provided, in particular, by
keeping constant the values of the system integrals. The
integration step was chosen to be 0.001 or 0.0005, the num-
ber of sites N = 50–200, the characteristic times of sim-
ulations 102–103. The values of dimensionless parameters
were chosen in view of known estimates of geometrical and
energetic characteristics of DNA molecule: D = 0.04 eV,
σ = 4.45 Å−1, κ = 0.06 eV/Å2, m = 300 a.m.u. [56],
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v = 0.084 eV (for Poly-G/Poly-C chain) [57], χ =
0.13 eV/Å [57,58], ρ = 0.5, η = 0.35 Å−1 [53]. It follows
that ωbond ≈ 0.2, τe = ν/�ωM ≈ 18, χh ≈ 0.5, χel ≈ 8.5.

The values of parameters used in numerical modeling
were chosen with due regard to the assessments made. The
peculiarity of this investigation is the way of exciting os-
cillations and waves in the chain via perturbation of the
velocity of one or several neighboring sites by a strong ex-
ternal local action of duration rather short. As a result
nonlinear localized local waves should arise in the chain.
These waves will be able to trap an electron and localize
it in position or transfer it along the chain without the
need of an external electric field. Notice that excitation
of a lattice due to initial displacements of the particles
from equilibrium positions were considered, for example,
in reference [59]. It was shown that formation of nonlinear
localized waves in the form of breathers is possible. We will
consider initial excitation of the velocities of DNA parti-
cles, i.e. assume that initial kinetic energy is introduced
in the system.

4 Nonlinear oscillations and waves in DNA
excited by short kick of one particle
and through their interaction
with the external charge

Let us assume that at the initial instant of time τ = 0 a
particle with number nin gets a strong kick and its veloc-
ity takes a value v0 ≥ 1 (the dimensionless velocity v0 = 1
corresponds to the dimensionless energy of complemen-
tary H-bonds in an isolated nucleotide pair). At the same
time a charged added excess particle (hereafter for brevity
sake, an electron) gets on this particle. The wave function
of the external particle is determined in the form of a
narrow Gaussian pulse. Depending on the value of the ini-
tial pulse either a pinned breather with frequency ωbr < 1
(Fig. 4., v0 = 1, ωbr ≈ 0.7, and Fig. 5, v0 = 3, ωbr ≈ 0.45),
arises in the chain or a bubble with fronts symmetrically
moving in opposite directions. Each front can be consid-
ered as a narrow mobile breather (Fig. 6, v0 = 16, see
also [58]). In this case, the components of the spectrum of
the initial pulse, belonging to the phonon spectrum scatter
in the lattice. The evolutions of the electron wave func-
tions are different in all the three cases. If the breather is
not very strong (with relatively small displacements and
velocities of the particles), the initially localized electron
quickly delocalizes itself (Figs. 4b and 4c) for any value of
the coupling parameter χh. The reason is that for small
values of the parameter the breather cannot hold the elec-
tron, while for large ones the electron breaks the breather
due to polaron effect – the electron tries to form a po-
laron in which the structure of the particles displacements
does not correspond to the structure of displacements of
the particles in the breather. However, a more powerful
breather (Fig. 5, v0 = 3) can trap the electron and form a
pinned bound state “breather-electron” in a narrow range
of the coupling parameter values (χel = 6). To specify
this state the term “breather-polaron” can also be used
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distribution of the probability density, pn = |cn|2, to find an
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simulation for t = 200.
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(polaro-breather [60]). But for the electron to transfer, the
initial energy of excitation should be still higher. In this
case a symmetrically expanding bubble is formed whose
fronts have the structures of mobile breathers (Fig. 6,
v0 = 16). These breathers trap the electron, the prob-
ability of trapping by the “left” and “right” breathers is
the same in view of symmetry. Therefore the electron wave
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function or better said its probability density splits. This
can happen if the distance between the localized states is
not very large so that for the characteristic time of the
electron transfer between these states, the chain’s struc-
ture does not change considerably. In the case under con-
sideration this condition can be assumed to be fulfilled
since in the localized state “polaron-breather” the maxi-
mum displacement of the electron from its initial position
is not very large, of the order of ten sites; besides it occurs
during Δτ ∼ 60, where from one can assess the transfer
rate, also the velocity of the breather vbr ≈ 0.15, if we
assume that the longitudinal coordinate (along the chain
axis) is normalized to the value of the distance between
the nucleotide pairs. Then the bubble stops expanding,
breathers slow down, weaken and loose the electron which
quickly delocalizes.

5 Nonlinear oscillations and waves in DNA
excited by a periodic disturbance
of the velocity of one or few particles
in the chain

Another effective way to excite localized oscillations and
waves is altering of the velocity of one or several particles
by an external periodic force with the frequency of the
order of that of a breather which, according to estimates,
falls into Terahertz range [56]. We should have in mind
that we need for such excitations very fine instruments
like field emission microscopes with very small radius of
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Fig. 7. Excitation of a bubble and breathers by harmonic
disturbance of the velocity of one particle (vin = 0.0025, ωin ≈
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time evolution of the distribution of particles velocities; (b) the
distribution of the probability density, pn = |cn|2, to find an
electron in the chain; (c) distribution of displacements qn (red)
and velocities vn (green) of particles; and (d) distribution of
the probability density along the chain at the last moment of
simulation for t = 100.

action and very small intensities. Any local manipulation
of the velocities should go through corresponding forces.
This is very difficult but should be in the range of mod-
ern instruments at least in near future of developing nano
mechanotronics. In this case there is a possibility to vary
the values of the amplitude and pumping frequency, the
duration of its action, the number of excited elements and
the difference of oscillation phases between the oscillators.

Here first we will assume that the velocity of one parti-
cle (again with number nin) initially changes harmonically
(vn = vin sin(ωint)) during rather a short time interval tin
of the order of a period of this function. The frequency
ωin is chosen to be less than 1 (i.e. less than the lower
frequency of the phonon spectrum band), so that the ex-
ternal force be, on the average, in resonance with the os-
cillator frequency which decreases as the energy grows,
while the value of vin is taken to be rather large so that
the lattice would be able to get a lot of energy during a
short time internal. As a result, again, depending on the
values of the parameters vin, ωin, tin localized structures
similar to the above described ones are excited. Figure 7
presents the process of formation of an expanding bubble
with fronts in the form of moving breathers which trap the
electron initially located on the particle whose velocity is
excited by the external harmonic force. On the whole the
effect observed corresponds to the results presented above
in Figure 6, however the electron transport is more effec-
tive here – the maximum displacement is more than half
larger, the life-time of a bound state is also half as much,
i.e. the transfer rate is virtually the same.
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Fig. 8. Excitation of an asymmetric bubble and breathers by
harmonic excitation of the velocity of four neighboring par-
ticles (vin = 0.0014, ωin ≈ 0.72, τin = 10, nin = 100–103,
Δϕin = 1.4, N = 200, ωbond ≈ 0.2) and trapping and transfer
of an electron (τe = 18, χh = 0.5, χel = 6). The figure (upper
level (a, c); lower level (b, d)) shows: (a) the time evolution of
the distribution of particles velocities; (b) the distribution of
the probability density, pn = |cn|2, to find an electron in the
chain; (c) distribution of displacements qn (red) and velocities
vn (green) of particles; and (d) distribution of the probability
density along the chain at the last moment of simulation for
t = 100.

The peculiarity of this way of excitation is the possi-
bility to determine the preferred direction of the charge
transfer if we realize excitation of several neighboring
particles with appropriate phase shift of harmonic influ-
ence of the same frequency. A typical result of such ap-
proach is presented in Figure 8. In this case four particles
were excited and the phase shift of the exciting force Δϕ
was 1.4. Therefore the excitation waves running to the left
interfere nearly in phase, while those running to the right-
out of phase. As a result, the amplitude of the wave run-
ning to the left turns out to be nearly twice as high as the
amplitude of the wave running to the right. If we choose
Δϕ = −1.4, the wave running to the right will prevail. By
such way we provide a preferred direction of the electron
transport in the direction of propagation of the prevail-
ing wave. The parameters of such asymmetric transport
are nearly the same as those in the case of “symmetric”
transport.

In conclusion it should be mentioned that by vary-
ing the parameters in the range of admissible values we
can try to find a set of values for which the life-time of
the bound state will be maximal. It can also be thought
that the difference of the excitation phases can be real-
ized not only between neighboring sites but also between
groups of sites (clusters) inside which particles oscillate
in phase. Notice that the study of the dynamics of DNA
affected by an external force is of independent interest
which, in particular, is stimulated by development of ter-
ahertz technologies [61].
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Fig. 9. Polaron in DNA.4.3 Time evolution, t = 0–200, of
the state reached after a long transient process. The parameter
values for t = 200 are used subsequently as initial conditions in
modeling the polaron-breather interaction (N = 200, ωbond ≈
0.2, τe = 18, χh = 4, χel = 48). The figure (in clockwise run:
(a, b, c)) shows: (a) the time evolution of the distribution of
the probability density, pn = |cn|2, to find an electron in the
chain; (b) distribution of the probability density for t = 0 (red)
and t = 200 (green); and (c) distribution of displacements qn

(red) and velocities vn (green) of particles for t = 200 along
the chain.

6 Interaction of a polaron and a breather
in DNA

Another mechanism of electron transport caused by non-
linear excitations in the chain arises when a polaron is
formed in a DNA molecule and subsequently a breather is
excited in one of the above-described ways. The question
arises: is a controllable transport of a polaron due to its in-
teraction with the breather possible? The steady polaron
state of an electron in DNA is thoroughly studied and the
possibility of its existence in the system under consider-
ation is practically ensured (see, for example [62–70] and
references therein). Notice, however that in studying the
evolution of the polaron state it should be born in mind
that the characteristic times of the evolution depend on
the values of the interaction parameter χh. In particular,
when the parameter value χh = 0.5 is used, the evolution
times are very large, therefore in the numerical experiment
the polaron was formed from the initial localized electron
state in the form of a Gaussian pulse in the course of a
long transition process with a large value of the interac-
tion parameters χh = 4, χel = 48 and considerable friction
coefficient providing attenuation of phonons arising in the
process of polaron formation (“cooling” of the lattice). As
a result, a state was obtained in which the main excitation
energy is concentrated in the polaron and only a small
portion of the total energy belongs to small excitations
outside the polaron (Fig. 9). The sites of the polaron os-
cillate only weakly and their displacements from the equi-
librium position are negative. This means that around the
polaron tapering occurs in contrast to a breather where, in
view of asymmetry of the Morse potential, positive values
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of the displacement prevail (compare Figs. 5c–6c; 7c–8c,
and 9c). Therefore, we can hardly expect, for example,
that a polaron and a breather may merge. However the po-
laron formed should respond to changes in the chain struc-
ture since the electron energy tends to reach the minimum
value. On the other hand, since the electron in the polaron
is bound to the lattice, the lattice’s structure should re-
arrange in the polaron region which requires some energy.
Accordingly, the polaron though resistant to small excita-
tions, it should respond to large ones. These assumptions
are fully confirmed by the results of numerical simulations.

Indeed, it was found that the polaron once formed is
not significantly deformed in the case of a small initial
excitation of the velocity of one particle |v0| ≤ 1, even
if the particle being excited dislocates in close proximity
to the polaron. However if we increase the value of |v0|,
we can notice that for rather a large value of the initial
excitation energy, the polaron starts traveling trying to
move away from the arising breather. Figures 10a–10c,
(v0 = 1) demonstrate that a polaron which centers ini-
tially at n = npol = 96, uniformly shifts to the distance of
n = 5 from its initial position during the time t = 100. It
is due to the influence of the breather, excited by a kick to
the particle with number n = 105 and taking the velocity
v0 = 1. The velocity of the displacement is vpol = 0.05.
Then the polaron virtually stops (for t > 100).

If the breather energy increases, the polaron veloc-
ity and the value of displacement grow (Figs. 10d–10f,
v0 = 2), and for v0 ≥ 5, when the expanding bubble is ex-
cited they become very large (Figs. 10g–10i, v0 = 8), i.e.
larger than in the cases considered above. However the
transformation of the evolution patterns of the wave func-
tion distribution (while the energy of the initial excitation
is increasing) is not monotonic, distributions of the kind
of those presented in Figures 10a and 10g, can intersperse
with the evolution patterns presented in Figure 10d. This
is probably concerned with the relation of the phases of
the wave functions of the electron and phonons accom-
panying excitation of the breather. The consequence is
also a non-monotonic dependence of the polaron velocity
on the initial excitation energy. Nevertheless, the analysis
suggests that, on the average, the velocity of a polaron
induced by a breather grows along the curve shown in
Figure 11.

Displacement of a polaron can be larger than that pre-
sented in Figure 10, however in the course of time the po-
laron can slow down, deform itself, and fade away. There-
fore, for definiteness, we have considered a limited (though
long) time interval t = 200, during which the polaron mo-
tion can be considered to be nearly uniform and be char-
acterized by a mean value of the velocity and, accordingly,
current.

7 Concluding remarks and summary of results
found

Understanding effective charge transfer in DNA-like
molecular wires is of paramount importance for the de-
velopment of nanobioelectronics [8,9,71]. Traditionally,

 0
 0.1
 0.2
 0.3

 0  40 40  80  120  160  0

 10

 20

 30

 40

 50

n

t
pn

pn

 0

 0.04

 0.08

 0.12

 0.16

 0  40  80  120  160 n

pn

 0

 0.4

 0.8

 0  40  80  120  160 n
 -0.4

q,v

 0
 0.1
 0.2
 0.3

 0  40  80  120  160  0

 10

 20

 30

 40

 50

n

t
pn

pn

 0

 0.04

 0.08

 0.12

 0.16

 0  40  80  120  160 n

p
n

 0

 1

 2

 0  40  80  120  160 n

q,v

 0
 0.1
 0.2
 0.3

 0  40 40  80  120  160  0

 10

 20

 30

 40

 50

n

t
pn

pn

 0

 0.1

 0.2

 0  40  80  120  160 n

pn

 0

 

 4

 

 8

 12

 0  40  80  120  160 n

q,v

Fig. 10. Interaction of a polaron with a breather in DNA.
Initially the polaron is centered at site n = 96, the breather
is excited by the initial kick of a particle at site n = 105. The
figure (by blocks of the three panels reading in clockwise run;
(a, b, c); (d, e, f); (g, h, i)) shows the time evolution of the
distribution of the probability density, pn = |cn|2, to find an
electron in the chain (a, d, g); distribution of the probability
density for t = 0 (red) and t = 200 (green) (b, e, h); distri-
bution of displacements qn (red) and velocities vn (green) of
particles for t = 200 (c, f, i) along the chain. For the top row
vn = 1, for the middle row vn = 2, for the bottom row vn = 8.
N = 200, ωbond ≈ 0.2, τe = 18, χh = 4, χel = 48.

http://www.epj.org


Eur. Phys. J. B (2016) 89: 101 Page 9 of 10

 0

 0.1

 0.2

 0   10  20  30  T

 v

 0

 pol

Fig. 11. Approximate dependence of the polaron velocity vpol

on the energy of the initial pulse v2
in/2 for the case presented

in Figure 10. N = 200, ωbond ≈ 0.2, τe = 18, χh = 4, χel = 48.

by the force responsible for the charge transfer is meant
the potential difference induced between the nanowire
ends. According to [65,66], theoretical estimates of the
charge mobility in DNA yield a small value of this quan-
tity: μ ∼ 1 × 10−4 cm2/V s. Thus it is known that in a
“dry” chain the value of the hole mobility μ is of the or-
der of 1 cm2/V s [67–69]. For “wet” chains, i.e. chains in
a solution, where a great role belongs to solvation effects,
the mobility turns out to be several orders of magnitude
lower than for “dry” ones [65,66]. The use of DNA-wires
with so low mobility makes them to be of little promise
for nanobioelectronics purposes.

The results obtained in this paper offer the alternative
charge transfer via nonlinear localized excitations as car-
riers which exist in DNA even in the absence of charges
introduced there. Earlier this possibility was suggested for
model nonlinear molecular chains in references [72–74].

In this paper we investigated the interaction of ex-
cess charges inserted in DNA with nonlinear DNA ex-
citations in the framework of Peyrard-Bishop-Dauxois-
Holstein model [22,53,54]. Our main results are:

(1) In the framework of Peyrard-Bishop-Dauxois-Holstein
model, we have carried out numerical modeling of the
interaction of an external charged particle (electron or
hole) with nonlinear localized oscillations and waves
in DNA excited via an external excitation of the veloc-
ity of one or several particles (a short kick providing
momentum rather than space displacement).

(2) We have shown that upon a local strong enough exci-
tation of the DNA lattice, breathers can arise on the
moving fronts of a bubble formed due to the nonlin-
ear nature of the bubble lattice. These breathers can
trap an added, excess external electron and transfer
it along the chain. The characteristic time of the exis-
tence of the “breather-electron” bound state is of the
order of 20–30 periods of the lattice’s sites oscillations.
The characteristic displacement length is ∼20 sites.
The maximum probability to find an electron in the
moving breather is ∼0.2.

(3) We have also shown that if the lattice contains a mo-
tionless polaron and then a breather (though not very
powerful) is excited, then, as a result of the polaron-
breather interaction, the polaron tends to travel at a
rather high velocity, moving away from the breather.
The characteristic length of the trajectory, i.e. the dis-

tance over which the charge is transferred, can be
very large ∼100–200 sites. The velocity of the trav-
eling polaron grows, on the average, as the breather
energy increases. One can expect that this mechanism
brings the possibility to control the characteristics of
the charge transport in DNA-like wires.

For experimental realization of the described phenomena,
one can use atomic scanning probe microscope, whose tip
is brought to the DNA molecule and injects there a charge
which leads to local heating of the molecule and forma-
tion of a soliton, a breather, or a bubble in the place of
injection, as is described in references [75,76]. It can also
be assumed that the tip of the scanning probe microscope
can provoke localized excitations, solitons and breathers
by a short impulse or a set of impulses at one end of DNA,
and these formations, while traveling along the molecule
can trap polarons or stimulate their motion, providing
their transport along DNA. Thus we propose here a spe-
cial method of external local perturbations. This method
allow to control the direction of propagation of polarons,
and their charge transport. Our method includes appro-
priate phase shifts between the excitation of neighbors.

The considered effect of excitation of breathers-
bubbles by the periodic action on a local spot in a
DNA fragment requires a source of high-frequency oscil-
lations ω ∼ 1012 s−1, including a spatial resolution at
the nanoscale and time resolution at picosecond scale. At
present such a problem is not solved yet, since in real
force microscopes the maximum frequency does not ex-
ceed 105–106 Hz [61], however, the ongoing development
of terahertz technologies offers hope.

The work was done with the support from the RFBR, Project
No. 16-07-00305 and from the Russian Ministry of Education
and Science (Project No. 1008).
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