О РАСЧЕТАХ ТЕРМОДИНАМИЧЕСКИХ ВЕЛИЧИН В МОДЕЛИ ХОЛСТЕЙНА ДЛЯ ОДНОРОДНЫХ ПОЛИНУКЛЕОТИДОВ

Н. С. Фиалко^{*}, Е. В. Соболев, В. Д. Лахно^{**}

Институт математических проблем биологии Российской академии наук филиал Федерального исследовательского центра «Институт прикладной математики им. М. В. Келдыша Российской академии наук» 142290, Пущино, Московская обл., Россия

Поступила в редакцию 16 сентября 2016 г.

В полуклассической модели Холстейна при различных температурах термостата рассчитана динамика системы для поляронов разного типа: в политиминовых нуклеотидах (случай полярона большого радиуса), в полиадениновых фрагментах (полярон малого радиуса) и в полигуаниновых ДНК (промежуточный случай). Получены температурные зависимости термодинамически равновесных значений полной энергии, энергии привнесенного заряда и электронной теплоемкости. Сделана оценка электронной части энергии в пределе больших температур. Независимо от типа полярона пик зависимости электронной теплоемкости от температуры разделяет два режима — поляронный и делокализованный. Во всех случаях при большой температуре электронная теплоемкость убывает обратно пропорционально квадрату температуры.

DOI: 10.7868/S0044451017040000

1. ВВЕДЕНИЕ

Механизмы переноса заряда в биологических макромолекулах представляют интерес для биофизики и нанобиоэлектроники — новой быстро развивающейся дисциплины, объединяющей достижения наноэлектроники и молекулярной биологии [1–3]. Знание термодинамических характеристик существенно для понимания многих фундаментальных свойств материалов. К числу важнейших величин, характеризующих все типы материалов, относится их теплоемкость. Для нанобиоэлектроники ДНК интерес представляет расчет электронной части теплоемкости полинуклеотидных цепочек.

В данной работе с использованием прямого численного эксперимента мы изучаем температурные зависимости термодинамически равновесных значений энергии привнесенного заряда и электронной теплоемкости в квазиодномерных молекулярных цепочках, имитирующих однородные полинуклеотиды. Модель основана на гамильтониане Холстейна переноса заряда вдоль цепочки двухатомных сайтов [4] в полуклассическом приближении — движение заряда описывается уравнением Шредингера, а колебания сайтов — классическими уравнениями движения. Это простая модель с квадратичными потенциалами для сайтов, которая довольно широко используется применительно к ДНК [1,3,5–8].

Статья построена следующим образом. В разд. 2 описаны модель, переход к безразмерным уравнениям движения и характерные для модельных ДНК величины параметров. В разд. 3 изложены способы вычисления термодинамически равновесных значений и расчетные параметры модели. В разд. 4 приведены результаты моделирования для трех случаев — полярона малого радиуса (соответствует polyА-фрагментам), промежуточного случая (polyG-фрагменты) и полярона большого радиуса (для polyT-цепочек) при различных температурах термостата. Поскольку параметры однородных цитозиновых и адениновых фрагментов близки, случай polyC мы не рассматривали. Приведены температурные зависимости электронной части энергии и электронной теплоемкости.

Данная работа является развитием результатов работы [9]. Показано, что график зависимости электронной теплоемкости от температуры имеет пик при температуре, зависящей от длины цепочки. При переходе от температуры к тепловой энергии це-

^{*} E-mail: fialka@impb.psn.ru

^{**} E-mail: lak@impb.psn.ru

почки абсциссы этих пиков совпадают. Результаты расчетов для polyA-фрагментов были опубликованы ранее [10]: описан пик электронной теплоемкости и обсуждаются возможности обнаружения этого эффекта в ДНК-нанокалориметрии. Результаты расчетов для полярона малого радиуса мы включили в данную статью для более полной картины динамики поляронов разного типа в термодинамическом равновесии. В последнем разделе следует обсуждение результатов. В Приложении приведено обоснование для использования параметров, позволяющих сократить время расчета до выхода системы на термодинамическое равновесие, и для оценки электронной части энергии в пределе бесконечной температуры.

2. МОДЕЛЬ

Молекулярная цепочка приближенно моделируется дискретной цепочкой, состоящей из сайтов (сайты — молекулы или группы сильносвязанных атомов, которые взаимодействуют между собой сравнительно слабо). В цепочку привносится избыточный заряд (электрон или дырка). Распространение заряда влияет на движения сайтов, и, наоборот, смещение сайта изменяет вероятность нахождения заряда на нем. В случае ДНК сайтом считается пара комплементарных нуклеотидов, взаимодействующих путем образования водородных связей, которая приближенно моделируется как осциллятор.

Модель базируется на гамильтониане Холстейна для дискретной цепочки сайтов [4]. Выбирая волновую функцию Ψ в виде

$$\Psi = \sum_{n=1}^{N} b_n |n\rangle,$$

где b_n — амплитуда вероятности нахождения заряда (электрона или дырки) на *n*-м сайте ($n = 1, \ldots, N$, N — длина цепочки), для усредненного по состояниям гамильтониана системы $\langle \Psi | \hat{H} | \Psi \rangle$ получим

$$\langle \Psi | \hat{H} | \Psi \rangle = \sum_{m,n} \nu_{nm} b_m b_n^* + \frac{1}{2} \sum_n M \dot{\tilde{u}}_n^2 + \frac{1}{2} \sum_n K \tilde{u}_n^2 + \sum_n \alpha' \tilde{u}_n b_n b_n^*.$$
 (1)

Здесь ν_{mn} $(m \neq n)$ — матричные элементы перехода электрона между *m*-м и *n*-м сайтами, ν_{nn} — энергия заряда на *n*-м сайте (мы используем приближение ближайших соседей, т. е. $\nu_{mn} = 0$, если $m \neq n \pm 1$), α' — константа связи электрона со смещениями \tilde{u}_n сайта из равновесного положения, M — эффективная масса сайта, K — упругая постоянная.

Для однородной цепочки уравнения движения, полученные из гамильтониана (1) после приведения к безразмерным переменным имеют вид

$$i\frac{db_n}{dt} = \eta(b_{n-1} + b_{n+1}) + \chi u_n b_n,$$
(2)

$$\frac{d^2 u_n}{dt^2} = -\omega^2 u_n - \chi |b_n|^2 - \gamma \frac{du_n}{dt} + \xi Z_n(t).$$
(3)

Безразмерные коэффициенты связаны с размерными следующим образом. Матричный элемент перехода между соседними сайтами $\eta = \nu_{n,n\pm 1} \tau / \hbar$, где τ — характерное время, $t = \tau t$. При моделировании полагаем, что заряд может распространяться только вдоль одной нити ДНК без перескоков на комплементарную нить [11-13]. Частота колебаний сайтов $\omega = \tau \sqrt{K/M}$, константа связи $\chi = \alpha' \sqrt{\tau^3/\hbar M}$. В уравнение (3) для моделирования термостата добавлены член с трением (γ — коэффициент трения) и случайная сила $Z_n(t)$ — нормальная гауссова величина с единичным распределением, $\xi^2 =$ $= (2k_B T^* \tau/\hbar) \gamma T = 2E_* \gamma T, T^* -$ характерная температура, $\mathcal{T} = \tilde{T}/T^*$. Подробнее о связи размерных и безразмерных параметров см., например, работу [9] или [14].

Полная энергия (1), соответствующая системе динамических уравнений (2), (3), в безразмерной форме имеет вид (здесь $v_n = \dot{u}_n$ — скорость *n*-го сайта)

$$E_{tot} = \eta \sum_{n} b_{n} b_{n\pm 1}^{*} + \frac{1}{2} \sum_{n} v_{n}^{2} + \frac{\omega^{2}}{2} \sum_{n} u_{n}^{2} + \chi \sum_{n} u_{n} b_{n} b_{n}^{*}.$$
 (4)

Параметры модели, соответствующие нуклеотидным парам, выбраны следующими [15-18]. Эффективная масса сайта $M = 10^{-21}$ г (полагаем массы сайтов одинаковыми, комплементарные пары АТ и GC различаются на 3%), характерное время $\tau =$ $=10^{-14}$ с, $\omega=0.01$ (частота колебаний сайтов $\tilde{\omega}=$ $= 10^{12} \,\mathrm{c}^{-1}$ соответствует жесткости водородных связей $K \approx 0.062$ эВ/Å²), константа связи $\chi = 0.02$ $(\alpha' = 0.13 \text{ эB/Å})$. Матричные элементы перехода между сайтами: $\eta = 0.456 \ (\nu_{AA} = 0.030 \text{ эB})$ для адениновых фрагментов, $\eta = 1.276 \ (\nu_{GG} = 0.084 \ \text{эB})$ для гуаниновой цепочки и $\eta = 2.4 \ (\nu_{TT} = 0.158 \ \text{эB})$ для polyT. Четвертый вариант — фрагмент polyC мы не рассматривали. Поскольку матричные элементы перехода между цитозинами $\eta = 0.623$ $(\nu_{CC} = 0.041 \text{ эB})$ близки к значениям ν_{AA} , результаты будут похожи. Характерную температуру мы

Рис. 1. Распределение вероятностей по сайтам в состоянии с наименьшей энергией $E_{tot} = E_{pol}$ для параметров polyA (ПМР), polyT (ПБР) и polyG (полярон промежуточного радиуса) при $\mathcal{T} = 0$

выбрали $T^* = 1$ К, масштабный коэффициент $E^* = k_B T^* \tau / \hbar \approx 1.309 \cdot 10^{-3}$. Связь размерной энергии с безразмерными значениями следующая: $\tilde{E} = (\hbar/\tau) E \approx E \cdot 6.482 \cdot 10^{-3}$ эВ.

Без учета температуры ($\mathcal{T} = 0$) заряд в цепочке образует состояния с наинизшей энергией — поляроны разного типа (рис. 1).

В фрагментах polyA образуется полярон малого радиуса (ПМР), при этом максимальная вероятность нахождения заряда на среднем сайте $\max |b_n|^2 \approx 0.97$, и полная энергия $E_{tot} = E_{pol} \approx \approx -2.10$. Цепочки polyT соответствуют полярону большого радиуса (ПБР), $\max |b_n|^2 \approx 0.22$, $E_{pol} \approx \approx -4.94$. Полярон «промежуточного» радиуса формируется в polyG-цепочках, $\max |b_n|^2 \approx 0.67$, $E_{pol} \approx \approx -2.87$.

Заметим, что для динамики заряда существенно не абсолютное значение E_{tot} , а расстояние Δ до нижней границы зоны проводимости, определяемой матричным элементом перехода. Для бесконечной цепочки — зона от -2η до 2η , для конечных цепочек — нижняя граница $W_N = 2\eta \cos[N\pi/(N+1)]$ [19] при количестве сайтов N > 20 отличается от -2η в третьем знаке.

3. МЕТОДЫ РАСЧЕТОВ

При заданной температуре термостата проводился расчет множества реализаций (траекторий системы (2), (3) из разных начальных данных и с разными сгенерированными случайными временными рядами). По формуле (4) рассчитывалась средняя по реализациям зависимость полной энергии от времени $\langle E_{tot}(t) \rangle$ и второй момент $\langle E_{tot}^2(t) \rangle$. Расчеты динамики проводились на временах до выхода на равновесное значение $\langle E_{tot}(\mathcal{T}) \rangle$ для заданной температуры термостата \mathcal{T} (подробнее см. работу [9]). Отдельные реализации интегрируются 202s1g-методом [20] с добавлением искусственной нормировки (полная вероятность нахождения заряда в системе $\sum |b_n|^2 =$ = 1, переменные b_n корректируются, чтобы сумма квадратов их модулей равнялась единице).

Дополнительная сложность при расчете динамики системы (2), (3) была в том, что при моделировании переноса заряда в ДНК характерные времена квантовой (2) и классической (3) подсистем различаются на два порядка. Поэтому время выхода системы на термодинамическое равновесие очень большое, и оно растет с понижением температуры. Применяя основные соотношения термодинамики, можно показать, что для пары систем (2), (3) с параметрами (η, ω, χ) и $(\eta, C\omega, C\chi)$, где C = const, значения полной энергии в термодинамическом равновесии должны быть одинаковыми (подробнее в Приложении). Поскольку нас не интересуют процессы выхода к термодинамически равновесному состоянию, для производственных расчетов мы приняли $\chi = 1, \, \omega = 0.5.$ При проведении расчетов мы используем упрощающее предположение, что значения параметров не зависят от температуры.

Получив зависимости термодинамически равновесных значений $\langle E_{tot}(\mathcal{T}) \rangle$, из полной энергии вычитаем классическую энергию цепочки N осцилляторов и получаем оценку электронной части полной энергии:

$$E_e = \langle E_{tot}(\mathcal{T}) \rangle - E^* N \mathcal{T}.$$
 (5)

Также по значениям $\langle E_{tot}(\mathcal{T}) \rangle$ рассчитывается теплоемкость системы $C_V = \partial \langle E_{tot}(\mathcal{T}) \rangle / \partial \mathcal{T}$ и электронная теплоемкость C_e прямым численным дифференцированием,

$$C_e = \partial E_e / \partial \mathcal{T} = C_V - E^* N, \tag{6}$$

и с использованием вторых моментов через дисперсию энергии по формуле

$$C_{V2} = (\langle E_{tot}^2(\mathcal{T}) \rangle - \langle E_{tot}(\mathcal{T}) \rangle^2) / \mathcal{T}^2.$$

При выбранном способе приведения к безразмерному виду имеем $E^*C_V = C_{V2}$. Заметим, что рассчитанные этими способами значения теплоемкости получились близкими, что позволяет говорить о правильности качественной картины зависимости теплоемкости от температуры.

4. РЕЗУЛЬТАТЫ ВЫЧИСЛИТЕЛЬНЫХ ЭКСПЕРИМЕНТОВ

При разных температурах термостата рассчитаны величины $\langle E_{tot}(\mathcal{T}) \rangle$ для трех вариантов поляронов: ПМР (polyA), ПБР (polyT) и промежуточного радиуса (polyG). Для каждого варианта рассматривались цепочки разной длины: цепочки длиной 20, 40 и 60 сайтов для ПМР, длиной 40, 60 и 80 сайтов для промежуточного случая и 40, 60, 80 и 100 сайтов для ПБР.

4.1. Электронная часть энергии

Очевидно, $\langle E_{tot}(\mathcal{T}) \rangle$ зависит от длины N цепочки. Электронная часть полной энергии $E_e(\mathcal{T})$ (5) тоже различна для цепочек разной длины. Однако качественное поведение сходно: $E_e \approx E_{pol}$ при $\mathcal{T} = 0$, а с ростом температуры $E_e(\mathcal{T})$ увеличивается, что связано с переходом из поляронных состояний в делокализованные. Температура развала полярона зависит не только от параметров модели, но и от длины цепочки [9]: чем больше N, тем меньше температура развала. При дальнейшем увеличении температуры величина E_e выходит на константу, близкую к нулю, которая также зависит от N. Аналитические выкладки (см. Приложение) приводят к следующей оценке:

$$E_e \to -\frac{\chi^2}{\omega^2} \frac{1}{N+1}$$
 при $\mathcal{T} \to \infty.$ (7)

Результаты численного моделирования не противоречат этой оценке. На рис. 2 приведены графики $E_e(\mathcal{T})$ для случая полярона промежуточного радиуса при разной длине N цепочки.

Если провести перемасштабирование, т. е. в качестве переменной x выбрать не температуру, а безразмерную энергию классической цепочки $x = E^*N\mathcal{T}$, то значения $E_e(x)$ для разных N ложатся близко к одной кривой. На рис. 3 приведены графики $E_e(x)$ для ПМР, полярона промежуточного радиуса и ПБР.

Рис. 2. Температурные зависимости E_e (5) в полулогарифмическом масштабе для polyG-фрагментов. Штриховые прямые вверху показывают предельные значения (7) для соответствующих N, внизу показана энергия полярона

Рис. 3. Зависимости энергии заряда E_e от энергии классической цепочки $x = E^*N\mathcal{T}$. Горизонтальными штриховыми прямыми показаны значения для нижней границы зоны проводимости в разных цепочках, вертикальными абсциссы x^* , соответствующие пику электронной теплоемкости. Символы, обозначающие цепочки разной длины N, совпадают с обозначающие цепочки разной длины N, совпадают с обозначениями рис. 2 за одним исключением: для polyT-фрагментов светлыми точками обозначены результаты для N = 100

4.2. Электронная теплоемкость

Значения электронной теплоемкости C_e (6) после перемасштабирования $x = E^*N\mathcal{T}$ тоже ложатся близко к одной кривой при больших температурах (когда заряд в цепочке находится в делокализованном состоянии). Абсциссы x^* пиков графиков $C_e(x)$ по результатам расчетов близки для разных N. Если нормировать C_e на длину цепочки, то полученные

Рис. 4. Удельная электронная теплоемкость C_e/N в зависимости от энергии $x = E^*N\mathcal{T}$ классической цепочки для различных поляронов: $a - \Pi MP$ (polyA); δ – промежуточного радиуса (polyG); $e - \Pi GP$ (polyT-фрагменты)

кривые удельной электронной теплоемкости будут близки при малых \mathcal{T} , а в зоне перехода от поляронных состояний к делокализованным различаются высотой пиков.

Результаты расчетов $C_e(x)/N$ для ПМР, ПБР и полярона промежуточного радиуса приведены на рис. 4. Видно, что при малых x значения C_e/N во всех трех случаях близки к величине E^* . Видно также, что пики с увеличением длины цепочки N вы-

Рис. 5. Зависимости электронной теплоемкости от температуры. Цепочки одного типа обозначены одинаковыми линиями: самые нижние кривые при малых \mathcal{T} (и лежащие выше остальных того же типа при больших \mathcal{T}) — для N = 20, затем кривые для N = 40, 60, 80 и лежащая выше всех пунктирная линия при малых \mathcal{T} — для polyT длиной N = 100 сайтов. При больших \mathcal{T} эта же линия — самая нижняя из всех кривых для polyT

ражены все четче. Также они зависят от типа полярона — при фиксированном N чем больше радиус полярона, тем слабее выражен пик. Мы полагаем, что эти пики можно сопоставить границе двух состояний: при меньших энергиях заряд в среднем находится в поляронном состоянии, при более высоких — в делокализованном. По результатам моделирования, абсциссы x^* пиков для разных поляронов очень близки: $x^* \approx 0.50$ для polyG и $x^* \approx 0.52$ для polyT.

После пика убывание функции C_e происходит примерно одинаково вне зависимости от типа полярона (рис. 5). Мы аппроксимировали рассчитанные значения степенной зависимостью $C_e = a \mathcal{T}^b$. Во всех трех случаях $b \approx -2$.

5. ОБСУЖДЕНИЕ

Пики удельной электронной теплоемкости на графиках для polyA (рис. 4*a*) по абсциссе x^* примерно соответствуют энергии электронной части системы $E_e(x^*) = -2\eta$ на рис. 3. Другими словами, при параметрах ПМР заряд переходит из поляронного состояния в делокализованное, когда энергия соответствует нижней границе зоны проводимости. Для polyG (рис. 4*b*) и polyT (рис. 4*b*) абсциссы x^* пиков на рис. 3 соответствуют энергиям $E_e > -2\eta$.

По результатам расчетов можно сказать, что ПБР устойчивее к воздействию температурных возмущений по сравнению с ПМР.

Рассмотрим зависимости электронной теплоемкости от температуры (рис. 5). При больших \mathcal{T} , когда заряд находится в делокализованном состоянии, относительная зависимость

$$\frac{C_e(\mathcal{T})}{C_e(\mathcal{T}_0)} \approx \left(\frac{\mathcal{T}}{\mathcal{T}_0}\right)^{-2}$$

по результатам расчетов одинакова для всех η , т. е. электронная теплоемкость в области высоких температур определяется главным образом отношением χ/ω (свойствами классической подсистемы и константой связи), а величина матричного элемента η слабо влияет на C_e .

С увеличением длины цепочки пик С_е становится все выше, при этом его вершина по температуре смещается ближе к нулю. Полуклассическое приближение имеет смысл, когда температура больше температуры Дебая ($k_B T > \Theta = \hbar \tilde{\omega}$) [21]. Для выбранных нами параметров ДНК $\mathcal{T} \approx 8$. Получается, что пики C_e для $N \ge 40$ (рис. 5) попадают уже в область «нефизичности» рассматриваемой модели. При длине цепочки N < 40 для ПБР и полярона промежуточного радиуса пик на графике $C_e(\mathcal{T})$ практически незаметен. Для polyA при N < 40 пики Се будут при температурах выше температуры Дебая, однако они слабо выражены. Заметим, что для очень коротких цепочек эти результаты также неприменимы. Когда длина цепочки меньше радиуса полярона, энергия и форма наинизшего состояния могут сильно меняться. Например, у димера тимина наинизшая энергия при равномерном распределении. Такие цепочки — вопрос отдельных исследований. Мы полагаем, что отсутствие пика для роlуG при N = 20 и для роlуT в цепочках длиной 40 и 60 сайтов (см. рис. 4) тоже связано с недостаточной длиной цепочки, хотя при $\mathcal{T} = 0$ поляроны локализованы в области примерно 10 сайтов (см. рис. 1).

Интересно следующее свойство модели: при $\mathcal{T} \rightarrow 0$ удельная электронная теплоемкость C_e/N близка к константе E^* , не равной нулю (в размерных величинах $\tilde{C}_e/N \sim k_B$). Электронная часть теплоемкости при стремлении температуры к нулю пропорциональна длине цепочки. Может показаться, что в пределе бесконечно длинных цепочек и низких температур для того, чтобы нагреть заряд до конечной температуры, нужна бесконечная энергия. Такое заключение парадоксально, потому что один заряд не может привести к макроскопическому воздействию. Все разрешается, если соотнести область малых температур с поляронным режимом. Действительно, при стабилизации системы в определенном состоянии заряд действует на всю цепочку. В исследуемой модели линия, разделяющая поляронные состояния и делокализованные, имеет вид $N\mathcal{T} = \text{const}$, т. е. поляронный режим существует во всех цепочках конечной длины, но в очень длинных цепочках ограничен сверхнизкими температурами.

Таким образом, при анализе зависимостей теплоемкости от температуры мы всегда наблюдаем «парадоксальную» низкотемпературную асимптотику, но при этом нельзя делать выводы о бесконечных цепочках. С другой стороны, граница поляронного режима имеет смысл энергии и в то же время является конечной константой, не зависящей от N и \mathcal{T} , т.е. даже на нагрев бесконечной цепочки необходимо потратить конечную энергию, чтобы перейти на ветку термализованного режима, отвечающую высоким температурам с делокализованным состоянием заряда, где влияние электрона на цепочку мало.

Авторы благодарны сотрудникам Межведомственного суперкомпьютерного центра Российской академии наук — филиала Федерального государственного учреждения «Федеральный научный центр Научно-исследовательский институт системных исследований Российской академии наук» за предоставленные вычислительные мощности. Работа выполнена при частичной поддержке РФФИ (гранты №№ 14-07-00894, 15-07-06426, 16-07-00305) и РНФ (грант № 16-11-10163).

ПРИЛОЖЕНИЕ

Рассмотрим при $\mathcal{T} = 0$ систему, соответствующую стационарному решению системы (2), (3) (здесь мы повторяем хорошо известный путь [4]):

$$i\dot{b}_n = \eta(b_{n-1} + b_{n+1}) + \chi u_n b_n,$$
(8)

$$0 = -\omega^2 u_n - \chi |b_n|^2 \quad \Longrightarrow \quad u_n = -\frac{\chi}{\omega^2} |b_n|^2.$$
 (9)

Подставляем выражение (9) в (8), полагаем $b_n = r_n \exp(iWt), r_n = \text{const}$ и получаем систему Nкубических уравнений

$$Wr_n = \eta(r_{n-1} + r_{n+1}) - A^2 r_n^3 \tag{10}$$

с учетом

$$\sum_{n=1}^{N} r_n^2 = 1,$$
 (11)

где $A = \chi/\omega$, т. е. решение алгебраической системы (10), (11) зависит от отношения A константы связи к частоте классического сайта. Другими словами, при $\mathcal{T} = 0$ у двух систем обыкновенных дифференциальных уравнений (2), (3) с коэффициентами (η, χ, ω) {I} и $(\eta, C\chi, C\omega)$ {II} будет одинаковое стационарное решение $\{r_1, \ldots, r_N, W\}$.

Классические стационарные смещения для систем {I} и {II} будут разными:

$$u_{n\{I\}} = -\frac{\chi}{\omega^2} r_n^2, \quad u_{n\{II\}} = -\frac{\chi}{C\omega^2} r_n^2.$$

Подставив их в выражение для полной энергии (4), с учетом $v_n = 0$ получим, что энергии одинаковы:

$$E_{tot\{I\}} = E_{tot\{II\}} = \eta \sum_{n} r_n r_{n\pm 1} - \frac{1}{2} \frac{\chi^2}{\omega^2} \sum r_n^4.$$

Заметим, что эти выкладки справедливы для любых (не только однородных) цепочек при соблюдении одинакового отношения $\chi_n/\omega_n = A$ для всех сайтов.

Для конечной температуры термостата $\mathcal{T} \neq 0$ в системах {I} и {II} термодинамически равновесные значения полной энергии тоже одинаковы. Это можно показать из основных соотношений термодинамики. Перейдем в гамильтониане (1) к действительным переменным x_n , y_n , где $x_n + iy_n = b_n$, $r_n =$ $= |b_n|$. (Формально, канонически сопряженными будут $\sqrt{2}x_n$, $\sqrt{2}y_n$, но константы сокращаются при выкладках.)

Статистическая сумма в безразмерной форме имеет вид

$$Z = z^* \int_{\Omega} \exp\left(-\frac{E}{E^*\mathcal{T}}\right) dx_n dy_n du_n dv_n,$$

где z^* — константа, включающая, в частности, параметры перехода к безразмерной системе. Выражение (4) в этих переменных имеет вид

$$E = 2\eta \sum_{n} (x_n x_{n+1} + y_n y_{n+1}) + \frac{1}{2} \sum_{n} v_n^2 + \frac{\omega^2}{2} \sum_{n} u_n^2 + \chi \sum_{n} u_n (x_n^2 + y_n^2) \quad (12)$$

(индекс «tot» здесь и ниже опускаем). Фазовое пространство Ω , по которому выполняется интегрирование, имеет вид прямого произведения $\mathbb{R}^{2N} \times S^{2N}$: по переменным u_n и v_n границы от $-\infty$ до $+\infty$, и условие $\sum (x_n^2 + y_n^2) = 1$ на переменные x_n, y_n (интегрирование по поверхности сферы). Для расчета полной энергии системы $\langle E \rangle$ применим формулу термодинамического среднего функции F:

$$\langle F \rangle = \int_{\Omega} F \exp\left(-\frac{E}{E^*\mathcal{T}}\right) dx_1 \dots du_N / / \int_{\Omega} \exp\left(-\frac{E}{E^*\mathcal{T}}\right) dx_1 \dots du_N.$$
(13)

Выделим в (12) полные квадраты по смещениям, $(\omega u_n + [\chi/\omega]r_n^2)^2$. При замене переменных $U_n =$ $= \omega u_n + [\chi/\omega]r_n^2$ границы интегрирования в (13) не изменятся, а множители в числителе и знаменателе сократятся. После интегрирования выражения (13) по v_n , U_n получаем

$$\langle E \rangle = NE^* \mathcal{T} + \frac{\int E_q \exp(-E_q/E^* \mathcal{T}) \, dx_1 \dots dy_N}{\int \sum_S \exp(-E_q/E^* \mathcal{T}) \, dx_1 \dots dy_N}, \quad (14)$$

где $S = \sum_n (x_n^2 + y_n^2) - \mathsf{сфера}$ в пространстве \mathbb{R}^{2N} и

$$E_q = 2\eta \sum_n (x_n x_{n+1} + y_n y_{n+1}) - \frac{1}{2} \frac{\chi^2}{\omega^2} \sum_n (x_n^2 + y_n^2)^2. \quad (15)$$

Из выражений (14) и (15) видно, что для систем с коэффициентами (η, χ, ω) и ($\eta, C\chi, C\omega$) в термодинамическом равновесии значения $\langle E \rangle$ одинаковы. Были выполнены тестовые расчеты для трех вариантов: $\chi = 0.02, \, \omega = 0.01$ (соответствуют параметрам ДНК), $\chi = 0.2, \, \omega = 0.1$ и $\chi = 1, \, \omega = 0.5$. Результаты совпали с теоретическими: после выхода систем на термодинамическое равновесие средние по реализациям E одинаковы.

При оценке величины (14) для больших температур мы воспользовались результатами моделирования, которые показывают, что с ростом температуры первое слагаемое в (15) стремится к нулю. Положим, что при $\mathcal{T} \to \infty$ членом $2\eta \sum_n (x_n x_{n+1} + y_n y_{n+1})$ можно пренебречь. Знаменатель выражения (14) переходит в площадь сферы единичного радиуса $2\pi^N/(N-1)!$, и мы получаем

$$E_e = \langle E \rangle - NE^* \mathcal{T} \to \frac{(N-1)!}{2\pi^N} \frac{1}{2} \frac{\chi^2}{\omega^2} \times \sum_{n=1}^N \int_S (x_n^2 + y_n^2)^2 dx_1 \dots dy_N \quad (16)$$

(здесь мы воспользовались свойством перестановки суммы и интеграла). Под интегралом в правой части

выражения (16) стоят вторые моменты вероятностей нахождения заряда на сайте. Для больших температур их можно считать одинаковыми для всех сайтов, т. е.

$$E_e \approx \frac{1}{2} \frac{\chi^2}{\omega^2} \frac{(N-1)!}{2\pi^N} N \int_S (x_n^2 + y_n^2)^2 dx_1 \dots dy_N.$$
(17)

Последний интеграл берется аналитически, после перехода к обобщенным сферическим координатам

$$x_1 = \cos \phi_1, \quad y_1 = \sin \phi_1 \cos \phi_2, \dots,$$
$$x_N = \sin \phi_1 \sin \phi_2 \cdots \sin \phi_{2N-2} \cos \phi_{2N-1},$$

 $y_N = \sin \phi_1 \sin \phi_2 \dots \sin \phi_{2N-2} \sin \phi_{2N-1},$

где $\phi_1, \ldots, \phi_{2N-2} \in [0, \pi]$ и $\phi_{2N-1} \in [0, 2\pi)$. Для *N*-го сайта получаем

$$\int_{S} (x_{N}^{2} + y_{N}^{2})^{2} dx_{1} \dots dy_{N} =$$

$$= \int_{0}^{\pi} d\phi_{1} \int_{0}^{\pi} d\phi_{2} \dots \int_{0}^{\pi} d\phi_{2N-2} \int_{0}^{2\pi} d\phi_{2N-1} \times$$

$$\times \left[(\sin \phi_{1} \dots \sin \phi_{2N-2})^{4} \sin^{2N-2} \phi_{1} \sin^{2N-3} \times \right]$$

$$\times \phi_{2} \dots \sin \phi_{2N-2} = 2\pi \prod_{n=0}^{2N-2} \int_{0}^{\pi} \sin^{2N+3-n} \phi \, d\phi =$$

$$= 2\pi \frac{\pi^{N-1}}{3 \cdot 4 \cdot 5 \dots N(N+1)}. \quad (18)$$

Здесь мы воспользовались рекуррентными формулами для $I_n = \int \sin^n \phi \, d\phi$: $I_n = I_{n-2}(n-1)/n$ с учетом границ интегрирования, и $I_{2n-1}I_{2n} = \pi/n$. Подставив (18) в (17), получаем выражение (7).

Заметим, что простые рассуждения приводят к результату того же порядка, что и (7). В стационарном режиме $u_n = -(\chi/\omega^2)|b_n|^2$, в термодинамически равновесном состоянии среднее $\langle u_n \rangle$ такое же, а средняя вероятность нахождения заряда на *n*-м сайте равна $\langle |b_n|^2 \rangle = 1/N$. В выражении для энергии (4) для $\mathcal{T} \to \infty$ при усреднении первый член стремится к нулю, сумма второго и третьего — к энергии $E^*N\mathcal{T} N$ осцилляторов плюс (из-за того, что $\langle u_n \rangle \neq$ $\neq 0$, а дисперсия u_n не меняется) (χ^2/ω^2)(1/N). Последний член в (4) при подстановке среднего u_n дает

$$E_{int} = \left\langle \chi \sum_{n} u_n |b_n|^2 \right\rangle = -\frac{\chi^2}{\omega^2} \sum_{n} \langle |b_n|^4 \rangle.$$

Из расчетов [9] следует, что параметр делокализации $\langle R \rangle = 1/\langle \sum |b_n|^4 \rangle \sim N/2$, и мы получаем оценку $E_{int} \sim -(\chi^2/\omega^2)(2/N)$, т.е. энергия $E_e \sim -(\chi/\omega)^2(1/N)$. Отличие от выражения (7) возникает из-за неточности оценки $\langle R \rangle$ [9]. Действительно, применив (18), получим $\langle |b_n|^4 \rangle = 2/[N(N+1)]$ и $\langle R \rangle =$ = (N+1)/2.

ЛИТЕРАТУРА

- 1. Charge Migration in DNA, ed. by T. Chakraborty, Springer, Berlin (2007).
- 2. V. D. Lakhno, Int. J. Quant. Chem. 108, 1970 (2008).
- Nanobioelectronics for Electronics, Biology, and Medicine, ed. by A. Offenhäusser and R. Rinaldi, Springer, New York (2009).
- 4. T. Holstein, Ann. Phys. 8, 325 (1959).
- G. Ithier, E. Collin, P. Joyez et al., Phys. Rev. Lett. 94, 057004 (2005).
- S. S. Alexandre, E. Artacho, J. M. Soler, and H. Chacham, Phys. Rev. Lett. 91, 108105 (2003).
- Y. Wang, L. Fu, and K.-L. Wang, Biophys. Chem. 119, 107 (2006).
- 8. E. Starikov, Phil. Mag. 85, 3435 (2005).
- **9**. В. Д. Лахно, Н. С. Фиалко, ЖЭТФ **147**, 142 (2015).
- N. Fialko, E. Sobolev, and V. Lakhno, Phys. Lett. A 380, 1547 (2016).
- C. J. Murphy, M. R. Arkin, Y. Jenkins et al., Science 262, 1025 (1993).
- 12. S. O. Kelley and J. K. Barton, Science 283, 375 (1999).
- P. O. Neill, A. W. Parker, M. A. Plumb, and L. D. A. Siebbeles, J. Phys. Chem. B 105, 5283 (2001).
- **14**. В. Д. Лахно, Н. С. Фиалко, Ж. физ. хим. **86**, 928 (2012).
- 15. A. A. Voityuk, N. Rösch, M. Bixon et al., J. Phys. Chem. B 104, 9740 (2000).
- 16. J. Jortner, M. Bixon, A. A. Voityuk et al., J. Phys. Chem. A 106, 7599 (2002).
- 17. G. B. Schuster, Acc. Chem. Res. 33, 253 (2000).
- Modern Methods for Theoretical Physical Chemistry of Biopolymers, ed. by E. B. Starikov, S. Tanaka, and J. P. Lewis, Elsevier Sci. Publ., Amsterdam (2006), p. 461.
- **19**. В. Д. Лахно, В. Б. Султанов, ТМФ **176**, 429 (2013).
- 20. H. S. Greenside and E. Helfand, Bell System Techn. J. 60, 1927 (1981).
- 21. P. S. Lomdahl and W. C. Kerr, Phys. Rev. Lett. 55, 1235 (1985).