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Abstract—The dynamics of a system for different types of polarons, i.e., in polythymine nucleotides (large-
radius polaron), in polyadenine fragments (small-radius polaron), and in polyguanine DNA (intermediate
case) at different thermostat temperatures are calculated using the semi-classical Holstein model. The tem-
perature dependences of the thermodynamic equilibrium values of the total energy, the energy of an excess
charge, and the electronic heat capacity have been obtained. For all polaron types, the peak of the electronic
heat capacity dependence on temperature separates two modes (polaron and delocalized state). The elec-
tronic part of the energy is estimated in the high-temperature limit. In all cases, the electron heat capacity at
high temperatures decreases in inverse proportion to the square of the temperature.
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1. INTRODUCTION
The mechanisms of charge transfer in biological

macromolecules are of interest for biophysics and
nanobioelectronics (a new rapidly developing disci-
pline combining the achievements in nanoelectronics
and molecular biology) [1–3]. The knowledge of ther-
modynamic characteristics is important for explaining
many fundamental properties of materials. Their heat
capacity is an important characteristic of all types of
materials. For DNA nanobioelectronics, the calcula-
tion of the electronic part of the heat capacity of poly-
nucleotide chains is of considerable interest.

In this study, the temperature dependences of the
excess charge energy in thermodynamic equilibrium
and the electronic heat capacity in quasi-one-dimen-
sional molecular chains modeling homogeneous
nucleotides are studied using a direct numerical exper-
iment. The model is based on the Holstein Hamilto-
nian of charge transfer along a chain of diatomic sites
[4] in the semiclassical approximation; the motion of
a charge is described by the Schrödinger equation, and
the site oscillations are described by the classical equa-
tions of motion. This is a simple model with quadratic
potentials for sites, which is widely used for studying
DNA [1, 3, 5–8].

The article is organized as follows. In Section 2, we
describe the model, a transition to dimensionless
equations of motion, and the values of the parameters
typical for model DNA. In Section 3, we describe the

methods for calculating the values in thermodynamic
equilibrium state and the parameters of the model. In
Section 4, we consider the results of simulation for
three cases: a small-radius polaron (which corre-
sponds to polyA fragments), an intermediate case
(polyG fragments), and a large-radius polaron (polyT
chains) at different thermostat temperatures. Since the
parameters of homogeneous cytosine and adenine
fragments are close, we do not consider the polyC
case. The temperature dependences of the electronic
part of the energy and the electronic heat capacity are
constructed.

This study develops the results obtained in [9]. It is
shown that the temperature dependence of the elec-
tronic heat capacity has a peak at the temperature
depending on the chain length. Upon transition from
the temperature to the thermal energy of the chain, the
abscissas of these peaks coincide. The results of calcu-
lations for polyA fragments were published earlier in
[10]: the electronic heat capacity peak was described
and the possibility of detecting this effect in DNA
nanocalorimetry is considered. The results of the cal-
culations for a small-radius polaron are included in
this article in order to obtain a more comprehensive
description of the dynamics of polarons of different
types in thermodynamic equilibrium. In the last sec-
tion, the results are discussed. The Appendix contains
a substantiation for using parameters that make it pos-
sible to reduce the computer time for attaining ther-
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modynamic equilibrium in the system and can be used
to estimate the electron part of the energy in the limit
of infinite temperature.

2. MODEL
A molecular chain can approximately be simulated

by a discrete chain consisting of sites (sites are mole-
cules or groups of strongly bound atoms that interact
with one another relatively weakly). An excess charge
(electron or hole) is introduced into a chain. The
propagation of a charge affects the motion of sites;
conversely, a displacement of a site changes the prob-
ability of a charge being located on it. In the case of
DNA, a site is a pair of complementary nucleotides
interacting via the formation of hydrogen bonds,
which can approximately be simulated as an oscillator.

The model is based on the Holstein Hamiltonian
for a discrete chain of sites [4]. Choosing wavefunction
Ψ in the form

where bn is the probability amplitude of finding a
charge (electron or hole) at the nth site (n = 1, …, N,
N being the chain length), we obtain the following
expression for the state-averaged Hamiltonian
〈Ψ| |Ψ〉 of the system:

(1)

Here, νmn (m ≠ n) are the matrix elements of an elec-
tron transition between the mth and the nth sites; νnn is
the energy of a charge on the nth site (we are using the
nearest neighbors approximation, i.e., νmn = 0 if m ≠
n ± 1), α' is the constant of coupling of an electron
with displacements  of the site from the equilibrium
position; M is the effective mass of a site; and K is the
elastic constant.

For a homogeneous chain, the equations of motion
obtained from Hamiltonian (1) after the transition to
dimensionless variables have the form

(2)

(3)

The dimensionless coefficients are connected with the
dimensional coefficients as follows. The matrix ele-
ment of the transition between adjacent sites is η =
νn, n ± 1τ/ , where τ is the characteristic time and
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can propagate only along a DNA strand without hop-
ping to the complementary strand [11–13]. The fre-
quency of site oscillations is ω = τ  and the cou-

pling constant is χ = α' . For simulating the
thermostat, we supplemented Eq. (3) with a term with
friction (γ is the friction coefficient) and random force
Zn(t) which is the standard Gaussian quantity with the
unit distribution; and ξ2 = (2kBT*τ/ )γ7 = 2 γ7,
with T* being the characteristic temperature and 7 =

/ . The relation between the dimensional and
dimensionless parameters is described in greater
detail, for example, in [9] or [14].

The total energy (1) corresponding to the system of
dynamic equations (2) and (3) in dimensionless form
can be written as

(4)

where, vn =  is the velocity of the nth site. The model
parameters corresponding to nucleotide pairs are cho-
sen as follows [15–18]. The effective mass of a site is
M = 10–21 g (we assume that the masses of the sites are
identical; complementary pairs AT and GC differ by
3%); the characteristic time is τ = 10–14 s; ω = 0.01 (the
frequency of site oscillations  = 1012 s–1 corresponds
to the rigidity K ≈ 0.062 eV/Å2 of hydrogen bonds);
and coupling constant χ = 0.02 (α' = 0.13 eV/Å). The
matrix elements of the transition between sites are η =
0.456 (νAA = 0.030 eV) for adenine fragments, η =
1.276 (νGG = 0.084 eV) for a guanine chain, and η = 2.4
(νTT = 0.158 eV) for polyT. The fourth variant (polyC
fragment) was not considered because the matrix ele-
ments η = 0.623 of the transition between cytosines
(νCC = 0.041 eV) are close to the values of νAA, and the
results are similar. The characteristic temperature was
chosen as T* = 1 K and the scaling factor E* =
kBT*τ/  ≈ 1.309 × 10–3. The relation between the
dimensional energy and the dimensionless quantity is
as follows:  = ( /τ)E ≈ E × 6.482 × 10–3 eV.

Disregarding temperature (7 = 0), we can state
that the charge in a chain forms the lowest energy
states (polarons) of different types (Fig. 1).

A small-radius polaron (SRP) is formed in polyA
fragments; the maximal probability of finding the
charge in the middle site is |bn|2 ≈ 0.97 and the total
energy is Etot = Epol ≈ –2.10. The polyT chains corre-
spond to a large-radius polaron (LRP), for which max
|bn|2 ≈ 0.22 and Epol ≈ –4.94. An intermediate-radius
polaron is formed in polyG chains with max |bn|2 ≈ 0.67
and Epoll ≈ –2.87.
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It should be noted that not the absolute value of Etot
but the distance Δ to the lower boundary of the con-
duction band determined by the matrix element of the
transition is significant for the dynamics of the charge.
For an infinite chain, it is the band from –2η to 2η,
while for finite chains, the lower boundary WN =
2ηcos[Nπ/(N + 1)] [19] for a number of sites N > 20
differs from –2η in the third significant digit.

3. COMPUTATIONAL METHODS

At a preset thermostat temperature, we calculated a
large number of realizations (the trajectories of sys-
tem (2) and (3) were calculated from different initial
data with different generated random time series).
Formula (4) was used for calculating the realization-
averaged time dependence of the total energy 〈Etot(t)〉

and second moment 〈 (t)〉. The dynamics were cal-
culated over time intervals to the attainment of the
equilibrium value 〈Etot(7)〉 for a preset thermostat
temperature 7 (see [9] for details). Individual realiza-
tions were integrated using the 2O2S1G algorithm
[20] with artificial normalization (the total probability
of finding a charge in a system is bn|2 = 1; variables
bn were corrected so that the sum of the squares of their
moduli were equal to one).

An additional difficulty in calculating the dynamics
of system (2) and (3) was that the characteristic times
of quantum (2) and classical (3) subsystems in simu-
lating the charge transfer in the DNA differed by two
orders of magnitude. Therefore, it takes a long time to
attain thermodynamic equilibrium in the system and
even longer as temperature decrease. Using the basic
thermodynamic relations, we can show that for a pair
of systems (2) and (3) with parameters (η, ω, χ) and
(η, Cω, Cχ), where C = const, the values of the total
energy in thermodynamic equilibrium must be identi-
cal (see Appendix for details). Since we are interested
in the processes of attaining the thermodynamic equi-
librium state, we assume that χ = 1 and ω = 0.5 for our
calculations. In these calculations, we used the simpli-
fying assumption that the values of the parameters are
independent of temperature.

Having derived dependences 〈Etot(7)〉 of the values
in thermodynamic equilibrium, we subtract the classi-
cal energy of a chain of N oscillators from the total
energy and obtain the following estimate of the elec-
tron part of the total energy:

(5)

The values of 〈Etot(7)〉 are also used for calculating the
heat capacity CV = ∂〈Etot(7)〉/∂7 of the system and
the electronic heat capacity Ce by direct numerical dif-
ferentiation,

(6)

2
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and using the second moments in the terms of the
energy variance by the formula

For the chosen method of reduction to the dimension-
less form, we have E*CV = CV2. It should be noted that
the values of heat capacity calculated using these
methods turned out to be close, which indicates that
the temperature dependence of heat capacity is quali-
tatively correct.

4. RESULTS OF COMPUTING
EXPERIMENTS

We calculated the values of 〈Etot(7)〉 for three vari-
ants of polarons: SRPs (polyA), LRPs (polyT), and
intermediate-radius polarons (polyG) at different
thermostat temperatures. For each variant, we consid-
ered chains of different lengths (20, 40, and 60 sites for
SRPs; 40, 60, and 80 sites for the intermediate case;
and 40, 60, 80, and 100 sites for LRPs).

4.1. Electron Part of Energy

Obviously, 〈Etot(7)〉 depends on the chain length.
The values of the electron part Ee(7) (5) of the total
energy for chains of different lengths are also different.
However, their qualitative behavior is almost the same
(Ee ≈ Epol at 7 = 0 and increases with temperature
because of the transitions from the polaron states to
delocalized states). The temperature of polaron

= 〈 〉 − 〈 〉
2 2 2
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Fig. 1. Probability distribution over sites in the state with
the lowest energy Etot = Epol for parameters of polyA
(SRP), polyT (LRP), and polyG (intermediate-radius
polaron) at 7 = 0.
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breakup depends not only on model parameters but
also on the chain length [9]: the larger the value of N,
the lower the breakup temperature. Upon a further
increase in temperature, Ee attains a constant value
close to zero, which also depends on N. Analytic cal-
culations (see Appendix) lead to the following esti-
mate:

(7)

The results of the numerical simulation do not contra-
dict this estimate. Figure 2 shows the Ee(7) curves for
an intermediate-radius polaron for different lengths N
of the chain.

If we perform rescaling (i.e., choose the dimen-
sionless energy of a classical chain rather than the tem-
perature as variable x, x = E*N7), the values of Ee(x)
for different values of N are found to be close to the
same curve. Figure 3 shows the Ee(x) curves for an
SRP, intermediate-radius polaron, and LRP.

4.2. Electronic Heat Capacity

After rescaling x = E*N7, the values of electronic
heat capacity Ce (6) are also close to the same curve at
high temperatures (when the charge is delocalized
along the chain). Abscissas x* of the peaks of the Ce(x)
curves plotted in accordance with the results of the
calculations for different values of N are close. If we
normalize Ce to the chain length, the resultant curves
for specific electronic heat capacity for small values of
7 are close, while in the transition region from the
polaron states to delocalized states, these curves differ
in the peak height.
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+ω
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The results of calculations of Ce(x)/N for a SRP,
LRP, and intermediate-radius polaron are shown in
Fig. 4. It can be seen that for small values of x the val-
ues of Ce/N are close to E* in all three cases. It can also
be seen that the peaks for higher values of the chain
length N are manifested more clearly. The peaks also
depend on the polaron type (for a fixed N, the peak is
manifested less strongly for larger polaron radii). We
think that the peaks can be put in correspondence with
the boundary between two states: the charge is on the
average in the polaron state for lower energies and in
the delocalized state for higher energies. According to
the simulation results, abscissas x* of the peaks for dif-
ferent polarons are very close: x* ≈ 0.50 for polyG and
x* ≈ 0.52 for polyT.

After passing through the peak, function Ce
decreases almost uniformly irrespective of the polaron
type (Fig. 5). We approximated the calculated values
by the power dependence Ce = a7b. In all cases, we
have b ≈ –2.

5. DISCUSSION
The peaks of the electronic specific heat on the

curves for polyA (Fig. 4a) with abscissa x* approxi-
mately correspond to the energy of the electron part
Ee(x*) = –2η of the system in Fig. 3. In other words,
for the SRP parameters, the charge passes from the
polaron state to the delocalized state in which the
energy corresponds to the lower boundary of the con-
duction band. For polyG (Fig. 4b) and polyT
(Fig. 4c), abscissas x* of the peaks in Fig. 3 correspond

Fig. 2. Temperature dependences of Ee (5) on the semilog-
arithmic scale for polyG fragments. Dashed lines at the top
show the limiting values of (7) for the corresponding values
of N; the polaron energy is shown at the bottom.
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results for N = 100.
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to energies Ee > –2η. It can be concluded from the cal-
culation results that LRPs are more stable to the action
of temperature perturbations than SRPs.

Let us consider the temperature dependences of
the electronic heat capacity (Fig. 5). At large values of
7 for which the charge is in the delocalized state, the
relative dependence

−
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e

e
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is the same for all values of η according to the calcula-
tion results; i.e., the electronic heat capacity in the
high-temperature range is mainly determined by the
ratio χ/ω (by the properties of the classical subsystem
and the coupling constant), and the value of the
matrix element η weakly affects Ce.

With an increasing chain length, the Ce peak
becomes higher, and its top is shifted towards zero on
the temperature scale. The semiclassical approxima-
tion is applicable when the temperature is higher than
the Debye temperature (kB  > Θ = ) [21]. For the
chosen DNA parameters, we have 7 ≈ 8. It turns out
that the Ce peaks for N ≥ 40 (see Fig. 5) fall into the
nonphysical region of the model in question. For a
chain length N < 40 for LRP and intermediate-radius
polaron, the peak on the Ce(7) curve is almost indis-
tinguishable. For polyA with N < 40, the Ce peaks are
observed at temperatures higher than the Debye tem-
perature, but these peaks are poorly manifested. It
should be noted that these results for short chains are
also inapplicable. When the chain length is smaller
than the polaron radius, the energy and shape of the
lowest state may change significantly. For example,
the lowest energy of thymine dimer corresponds to a
uniform distribution of charge. Such chains are the
subjects of special investigations. We believe that the
absence of a peak for polyG with N = 20 and polyT
with chains of length 40 and 60 sites (see Fig. 4) is also
due to the insufficient length of the chain although,
polarons at 7 = 0 are localized in the region of
approximately 10 sites (see Fig. 1).

�T ω��

Fig. 4. Specific heat capacity Ce/N as a function of energy
x = E*N7 of a classical chain for different polarons:
(a) SRP (polyA); (b) intermediate-radius polaron
(polyG); and (c) LRP (polyT fragments).
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The following property of the model is also of
interest: for 7 → 0, the electronic specific heat Ce/N
is close to constant E* other than zero (in dimensional
quantities, /N ~ kB). The electron part of the heat
capacity for temperatures tending to zero is propor-
tional to the chain length. It may appear that in the
limit of infinitely long chains and low temperatures, an
infinitely high energy is required for heating the charge
to a finite temperature. This conclusion seems to be
paradoxical because the charge alone cannot lead to a
macroscopic action. This paradox is resolved if we put
the range of low temperatures in correspondence with
the polaron regime. Indeed, when the system is stabi-
lized in a certain state, the charge is acting on the
entire chain. In the model under investigation, the line
separating the polaron states from delocalized states
has the form N7 = const; i.e., the polaron regime
exists in all finite-length chains; however, in very long
chains, it is limited by ultralow temperatures.

Thus, analyzing the temperature dependences of
the heat capacity, we always observe a paradoxical
low-temperature asymptotic form; however, in this
case, we cannot draw conclusions concerning
infinitely long chains. On the other hand, the bound-
ary of the polaron regime has the meaning of energy,
but is at the same time a finite constant independent of
N and 7; i.e., to pass to the branch of the thermalized
regime corresponding to high temperatures with a
delocalized state of the charge in which the influence
of an electron on the chain is weak, we must spend
finite energy even for heating an infinitely long chain.
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APPENDIX
Let is consider a system corresponding to the time-

independent solution of system (2) and (3) at 7 = 0
(here, we repeat the well-known procedure [4]):

(A.1)

(A.2)

Substituting expression (A.2) into (A.1) and assuming
that bn = rn exp(iWt) and rn = const, we obtain a system
of N cubic equations

(A.3)
with the condition

(A.4)

where A = χ/ω; i.e., the solution of algebraic system
(A.3) and (A.4) depends on the ratio A of the coupling
constant to the frequency of the classical site. In other
words, for 7 = 0, two systems of ordinary differential
equations (2) and (3) with coefficients (η, χ, ω) {I}
and (η, Cχ, Cω) {II} have the same steady-state solu-
tion {r1, …, rN, W}.

The classical steady-state displacements for sys-
tems {I} and {II} are different:

Substituting these displacements into expression (4)
for the total energy and considering that vn = 0, we
find that the energies are identical:

It should be noted that these arguments are valid for
any (not only homogeneous) chain when the ratio
χn/ωn = A is the same for all sites.

For a finite thermostat temperature 7 ≠ 0 in sys-
tems {I} and {II}, the thermodynamic equilibrium val-
ues of total energy are also identical. This can be
deduced from the basic thermodynamic relations. Let
us pass in Hamiltonian (1) to real-valued variables xn,
yn, where xn +iyn = bn, rn = |bn|. (Formally, xn and

yn will be canonically conjugate, but the constants
are cancelled out during transformations.)

The partition function in dimensionless form can
be written as

where z* is a constant including, in particular, the
parameters of transition to the dimensionless system.
Expression (4) in these variables has the form

(A.5)

(here and below, we omit the subscript tot). Phase space
Ω over which integration is carried out has the form of
direct product ℝ2N × S2N: the boundaries range from
‒∞ to +∞ for variables un and vn, and variables xn and

yn satisfy the condition  +  = 1 (integration
over the surface of the sphere). For calculating the total
energy 〈E〉 of the system, we apply the formula for the
thermodynamic mean of function F:
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(A.6)

In expression (A.5), we separate the total squares in
the displacements, (ωun + [χ/ω] )2. Upon substitu-

tion of variables Un = ωun + [χ/ω] , the integration
boundaries in expression (A.6) remain unchanged,
and the factors in the numerator and denominator are
cancelled out. Integrating expression (A.6) with
respect to vn and Un, we obtain

(A.7)

where S =  +  is a sphere in space ℝ2N and

(A.8)

It can be seen from expressions (A.7) and (A.8) that
the values of 〈E〉 for systems in thermodynamic equi-
librium with coefficients (η, χ, ω) and (η, Cχ, Cω) are
identical. We performed test calculations for three
variants: χ = 0.02, ω = 0.01 (corresponding to the
DNA parameters), χ = 0.2, ω = 0.1, and χ = 1, ω =
0.5. The results coincided with the theoretical esti-
mates: after the attainment of thermodynamic equilib-
rium, the values of E averaged over the realizations are
identical.

In estimating the value of quantity (A.7) for high
temperatures, we used the simulation results, which
showed that the first term in expression (A.8) tends to
zero upon an increase in temperature. We assume that

for 7 → ∞, term 2η xnxn + 1 + ynyn + 1) can be dis-
carded. The denominator in expression (A.7) is trans-
formed into the area of the sphere of unit radius,
2πN/(N – 1)!, and we obtain

(A.9)

here, we have used the commutativity of the sum and
integral. The integrand on the right-hand side of
expression (A.9) contains the second moments of the

probability of finding the charge at a site. For high
temperatures, their values can be assumed to be iden-
tical for all sites, i.e.,

(A.10)

The last integral can be evaluated analytically after
transition to the spherical coordinates

where φ1, …, φ2N – 2 ∈ [0, π] and φ2N – 1 ∈ [0, 2π). For
the Nth site, we obtain

(A.11)

Here, we have used the recurrent relations for In =

dφ: In = In – 2(n – 1)/n taking into account the
integration limits and I2n – 1I2n = π/n. Substituting
expression (A.11) into (A.10), we obtain formula (7).

It should be noted that simple arguments lead to
the result of the same order of magnitude as expression
(7). In the steady-state regime un = –(χ/ω2)|bn|2, the
mean value 〈un〉 in thermodynamic equilibrium is the
same, and the mean probability of finding a charge at
the nth site is 〈|bn|2〉 = 1/N. In expression (4) for energy
for 7 → ∞, the first term tends to zero upon averag-
ing, while the sum of the second and third terms tends
to energy E*N7 of the N oscillators plus (χ2/ω2)(1/N)
because 〈un〉 ≠ 0 and the variance of un remains
unchanged. The last term in expression (4) after the
substitution of the mean value of un gives
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It follows from the calculation results of [9] that delo-
calization parameter 〈R〉 = 1/  ~ N/2, and we
obtain the estimate Eint ~ –(χ2/ω2)(2/N); i.e., energy
Ee ~ (χ/ω)2(1/N).

The difference from expression (7) appears
because of the inaccuracy of the estimate of 〈R〉 [9].
Indeed, using expression (A.11), we obtain 〈|bn|4〉 =
2/[N(N + 1)] and 〈R〉 = (N + 1)/2.
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