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Numerical Modeling of the Charge
Transfer Along 1D Molecular Chain

“Donor-Bridge-Acceptor” at T=300K
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142290 Pushchino, Russia
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Abstract. We consider charge transfer along homogeneous chain of
sites (such as DNA fragment) with the ends which imitate a donor
and an acceptor. We performed direct numerical experiments based on
the semi-classical Holstein model. To take into account the temperature,
Langevin thermostat is used. Recently it has been shown that in homo-
geneous chains the charge distribution in thermodynamic equilibrium
state (TDE) depends on the thermal energy of the lattice subsystem.
Here, we have calculated dynamics of the system from the initial state
“the charge is localized at the donor” over time intervals to the attain-
ment of the TDE. The time intervals dependence on the length of the
chain at fixed temperature is estimated. Part of parameter values are
chosen as for DNA fragments of the GA. . . AGGG type. The results of
the calculations are compared with the data of biophysical experiments
on the hole transfer in DNA sequences.

Keywords: Holstein model · Langevin equation ·
Time to the attainment of the thermodynamic equilibrium state ·
DNA fragment

1 Introduction

At present, the attention of researchers is attracted to the possible mechanisms
of charge transfer in quasy1D biomacromolecules, such as DNA, in connection
with the potential using of this nano-objects in nanobioelectronics [1,2]. Stud-
ies of charge transfer in DNA also are of importance for biophysics; e.g., the
propagation of excited charges along DNA is part of replication and reparation
of DNA; movement of radicals over DNA molecules plays an important role in
mutagenesis and cancerogenesis processes [3,4].

Biophysical experiments on the hole transfer from guanine G (donor) to
guanine triplet GGG (acceptor), separated by adenine-thymine (A-T) bridges
of various lengths [5–7], demonstrate that the rate of charge transfer between
donor and acceptor decreases with increasing separation only if the guanines
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are separated by no more than three base pairs; if more bridging base pairs are
present, the transfer rates exhibit only a weak distance dependence.

In this work we use a direct numerical experiment on the charge transfer
from donor along bridge, consisting of homogeneous sites, to the acceptor. The
model is based on the semi-classical Holstein Hamiltonian. The Holstein polaron
model is simple and actual for explaining charge transfer in DNA [8–10]. To
take into account the temperature, Langevin thermostat is used. Recently it has
been shown that the charge distribution in the thermodynamic equilibrium state
depends not only on the temperature, but also on the length of the chain, for
homogeneous chains [11] and for the chain with a defect site in the center, which
plays the role of a trap for the charge [12]. Here we have calculated dynamics
of system from the initial state “the charge is localized at the donor” over time
intervals to the attainment of the thermodynamic equilibrium. The time intervals
dependence on the chain length N is estimated at fixed temperature T = 300 K.

2 Mathematical Model

We have considered the semiclassical Holstein model: quantum particle (an elec-
tron or a hole) moves along a chain of classical sites [13]. In the case of DNA
a site – oscillator – corresponds to complementary base pair, its frequency ω is
related to hydrogen bonds in the base pair. Choosing the wave function Ψ in the
form Ψ =

∑N
n=1 bn|n〉, where bn is the amplitude of the probability of the charge

occurrence at the n-th site (n = 1, . . . , N , N is the chain length), we write the
averaged Hamiltonian:

〈Ψ |Ĥ|Ψ〉 =
∑

m,n

νnmbmb∗
n +

1
2

∑

n

M ˙̃u2
n +

1
2

∑

n

Kũ2
n +

∑

n

α′ũnbnb∗
n. (1)

Here νnn is the electron energy at the n-th site, νmn (m �= n) are matrix elements
of the transition between the m-th and the n-th sites (depending on overlapping
integrals). We use the nearest neighbor approximation, i.e. νmn = 0 if m �= n ± 1;
the intrasite fluctuations ũn are assumed to be small and can be considered to be
harmonic; the probability |bn|2 of charge occurrence at the sites depends linearly
on the sites displacements ũn, α′ is the constant of coupling between quantum
and classical subsystems, M is the effective mass of the site, K is the elastic
constant.

Equations of motion obtained from Hamiltonian (1) and written in the dimen-
sionless form are

i
dbn
dt

= ηn,n−1bn−1 + ηn,n+1bn+1 + ηn,nbn + χunbn, (2)

d2un

dt2
= −ω2un − χ|bn|2 − γu̇n + ξZn(t). (3)

Dimensionless values are related to dimensional parameters as follows. The
matrix elements ηnk = νnkτ/� (τ is characteristic time, t̃ = τt). Site frequency
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Charge Transfer Along Donor-Bridge-Acceptor System 227

ω = τ
√

K/M , coupling constant χ = α′√τ3/�M . In subsystem (3) we added
the term with friction (γ is a friction coefficient) and random force Zn(t) with
the properties 〈Zn(t)〉 = 0, 〈Zn(t)Zm(t + s)〉 = δmnδ(s), ξ2 = (2kBT ∗τ/�)γT
(T ∗ is characteristic temperature). This way of imitating the environmental tem-
perature with the use of Langevin equations is well known [14,15].

To model the charge transfer dynamics, we computed a set of samples. Each
sample is a trajectory of system (2, 3) with its own initial data and pseudoran-
dom time series {Zn(t)}, i.e. ODE system with random right-hand side. It is
integrated by 2o2s1g-method [16]. Having obtained a number of samples we find
averaged “by ensemble” functions of time, e.g., probability of charge localization
on the n-th site 〈Pn〉 =

〈|bn|2〉 and delocalization parameter 〈R〉 =
〈
1/

∑
n |bn|4〉.

If charge is localized at one k-th site, i.e. charge probability |bk|2 ∼ 1, then
R ∼ 1. For homogeneous N -site chain, if charge is in delocalized state then
R ≈ N/2 [11].

3 On the Model Parameter Values

The characteristic time was chosen to be τ = 10−14 sec, the characteristic tem-
perature T ∗ = 1 K.

For the quantum subsystem (2) the parameter values corresponding to
nucleotide pairs are chosen as follows [17–20]. The matrix elements ηn,n±1 of
the transition between sites are: ηGA = 1.352 (νGA = 0.089 eV), ηAA = 0.456
(νAA = 0.030 eV), ηAG = 0.744 (νAG = 0.049 eV), ηGG = 1.276 (νGG =
0.084 eV). The electron energy on the site ηn,n: ηG = 0 (νG = 1.24 eV), ηA = 6.84
(νA = 1.69 eV). For DNA the effective mass of a site is M = 10−21 g; the rigid-
ity K = 0.062 eV/Å2 and coupling constant α′ = 0.13 eV/Å, i.e. ω = 0.01 and
χ = 0.02. When performing calculations, for the classical subsystem (3) we chose
the adapted values of the parameters that speed up the system’s movement to
the thermodynamic equilibrium state: ω = 0.5 and χ = 1. We suggest that not
only the average values in the TDE are the same for two systems with the same
ratio of parameters χ/ω [11], but the processes of reaching the TDE state from
the same initial state (when the charge is localized at the first donor site) will
be qualitatively similar.

The initial classical displacements un and velocities u̇n of sites in the samples
were chosen random from the TDE distribution of 1D oscillator at a given tem-
perature; the charge is localized at the 1st site G: b1 = 1, bn = 0 (n = 2, . . . , N).

Thermostat temperature T = 300 K. The length of the chain N varies from 5
(i.e. GAGGG – the bridge of one A) to 100 (i.e. GA. . . AGGG with 96 adenines).

4 On the Computational Method

For each N we have calculated the average probabilities 〈Pn〉 (for 100 samples)
on time interval of reaching the TDE state. The time during which the system
attains the TDE is estimated by the delocalization parameter 〈R〉 and by the
probability values at the G sites. Figure 1 shows the 〈R(t)〉 curve and the average
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228 N. Fialko and V. D. Lakhno

Fig. 1. Top: 〈R(t)〉. Bottom: average probability on donor (black curve) and on accep-
tor site (grey curve). The friction coefficient γ = 4ω.

probabilities on donor 〈PG(t)〉 and on acceptor 〈PGGG(t)〉 = (1/3) × {sum of
probabilities on the sites of acceptor} for GAAGGG chain (N = 6).

Figure 1 demonstrates that at time t ∼ 60000 the graphs become approxi-
mately constant, we take tTDE = 60000. In the TDE state the probability on
the donor 〈PG〉 ∼ 0.18 and the sum of probabilities on the acceptor sites ∼0.74.
Increase in N leads to an increase in the time interval tTDE. The time during
which the system attains the state of TDE can be very long which raises the
question of accumulation of a computing error. To clarify this question, we made
test computations.

The system (2, 3) has the first integral: the total probability Σ =
∑N

n=1 |bn|2
must be equal to 1. As result of numerical integration Σ is not kept exactly.
One of the ways that allows us to make computation intervals longer is forced
normalization, when the variables bn will be “corrected”. After the integration
step we obtain values bn[old], calculate Σ[old] and bn[new] = bn[old]/

√
Σ[old],

so new Σ will again be equal to 1. In doing so we do not come back to the same
trajectory, but “overjump” to a new one (corresponding to the trajectory from
other initial conditions), but individual trajectories are irrelevant when we are
interested in the average by a lot of samples. The forced normalization means
projection of all bn onto a unit sphere in C

N . This routine yields the same 2-nd
order of accuracy as the scheme of integration.
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Charge Transfer Along Donor-Bridge-Acceptor System 229

In the programme this procedure is not performed at each step of integration.
A “normalization error” εnorm is specified. If at any moment t |Σ − 1| > εnorm,
then bn = bn/

√
Σ. Similar methods are used in molecular dynamics modeling,

e.g. for forced recover to the surface with a predetermined energy in microcanon-
ical system [21].

For N = 6, 8, 10 we carried out some tests by integrating the system for large
time intervals with different steps h and different values of εnorm. For h ≤ 0.0005
and εnorm ≤ 0.0005, the averaged curves 〈R(t)〉 are closed, and for 〈Pn(t)〉 we
obtained the same result.

So, the problem of attaining the thermodynamic equilibrium can require huge
integration time but we can expect that the averaged calculation values will not
deviate greatly from the “ideal mean trajectory”.

5 Simulation Results

Numerical experiments demonstrate that: for short chains (N < 8) the time
interval tTDE increases very fast (exponentially) with the increasing N . For N ≥
8, tTDE is almost the same, and even decreases for N > 20. The calculations
were performed for two friction values γ = 1.8ω = 0.9, γ = 4ω = 2 (periodic and
aperiodic mode). In the aperiodic mode the time to reach the TDE decreases,
but the quality picture is the same. The simulation results show that friction
coefficient increasing accelerates the yield to the TDE of up to γ ∼ 4−5ω; with
further growth of the γ tTDE does not decrease.

In biophysical experiments for GA. . . AGGG fragments it was obtained [7],
that the relative rate constants decrease exponentially for N < 9, and with
further increase in N it remains almost unchanged. If we assume that the transfer
rate is a reciprocal of the time tTDE, then a similar picture is obtained for
modeling results. Figure 2 (left) shows the dependencies of 1/tTDE on the length
of the chain N .

For the classical subsystem we chose the specific values of the parameters
ω = 0.5, χ = 1., that speed up the system’s output to the TDE. We assume
that not only the average values in the TDE are the same, but the processes of
reaching the TDE from the same initial state (the charge is localized at the first
donor site) will be qualitatively similar. We performed several test calculations
with “more slow” parameters ω = 0.1, χ = 0.2 for chains with N = 5 − 10 sites
(see Fig. 2, right), and the results of the tests do not contradict the assumption.

Figure 2 (right) shows that the time tTDE of reaching the TDE increases with
decrease of parameter values for classical subsystem (3); the ratio of classical
frequencies is 5 and for N ≥ 8 tTDE increases hundreds of times. Qualitative
picture of the time dependence on the length of the bridge is the same. Also
this results demonstrate that for “DNA parameter values” (ω = 0.01, χ = 0.02)
computational experiment will require a huge operating time.
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230 N. Fialko and V. D. Lakhno

Fig. 2. Left: Dependencies of the transfer rate 1/tTDE on the chain length N for dif-
ferent friction coefficients, ω = 0.5. Right: Dependence of the tTDE on the N for two
systems with the same ratio χ/ω = 2.

6 Discussion

In biophysical experiments [5–7], the transfer rate was not measured directly,
the results are relative rate constants for different types of oligonucleotides. The
authors obtained relative values of the reaction constants for hole transport
from G to GGG, separated by bridges of different length. They found that for
the chains with N < 9, lengthening the bridge on one site reduces the relative
transfer rate by an order of magnitude. These values depend on oxidative damage
at the G and GGG sites; the damage correlates with probability of the charge
localization on the site.

We have modeled the system dynamics from the initial state “the charge
is localized at the donor” over time intervals to the attainment of the thermo-
dynamic equilibrium state and obtained dependence of the time intervals on
the chain length. This dependence has the same properties as relative rate con-
stants. Note that in the numerical experiments the values of probabilities of
charge localization on the G and GGG sites in the TDE state are close. There
is no direct correspondence between the data of biophysical experiments and
simulation results, but we think that the results of numerical experiments are of
interest.

In the thermodynamic equilibrium state, the value of 〈R〉 ∼ N/2 for chains
N ≥ 20, i.e. the charge is almost uniformly distributed along the chain. Based
on the simulation results, it can be assumed that (similarly to the case of homo-
geneous chains) in short chains the charge is in the polaron state, and in long
chains the charge is delocalized, and the charge transfer from the donor to the
acceptor occurs by different mechanisms.
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