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The dynamics of charge migration was modeled to calculate temperature dependencies of its thermody-
namic equilibrium values such as energy and electronic heat capacity in homogeneous adenine fragments. 
The energy varies from nearly polaron one at T ∼ 0 to midpoint of the conductivity band at high temper-
atures. The peak on the graph of electronic heat capacity is observed at the polaron decay temperature.
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The problem of how a charge, or energy is transferred in 
molecular chains is of great interest for biology and nanobio-
electronics – a new rapidly developing discipline which combines 
achievements of nanoelectronics and molecular biology. One of 
the central problems of nanobioelectronics deals with creation of 
molecular nanowires and their circuits based on synthesized nu-
cleotide chains. Therefore the study of conducting properties of 
DNA molecules is of profound interest [1–3].

In this paper we carry out a direct numerical experiment to 
investigate temperature dependencies of thermodynamic equilib-
rium values of “electronic part of total energy” and electronic 
heat capacity in quasi-one-dimensional molecular chains. The com-
putations have simulated homogeneous adenine–thymine polynu-
cleotide sequences with excess charge carriers moving along ade-
nine chain (polyA).

The knowledge of thermodynamic quantities is essential for 
understanding many fundamental properties of materials. An im-
portant characteristic of all kinds of materials is their heat ca-
pacity. For DNA nanobioelectronics, of primary concern is calcu-
lation of electronic part of the polynucleotide chains heat capac-
ity. Measurements of temperature dependence of electronic heat 
capacity give the knowledge of the concentration of current car-
riers in a molecule, quantum phase transitions, structural proper-
ties of materials, etc. In the context of innovative development of 
high-accuracy calorimetry and nanocalorimetry [4–6] calculation of 
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temperature dependencies of electronic heat capacities of homoge-
neous chains is a topical problem.

The model is based on Holstein Hamiltonian for charge transfer 
along a chain [7–12]:
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Here νmn (m �= n) are matrix elements of the electron transition 
between m-th and n-th sites (depending on overlapping integrals), 
νnn is the electron energy on the n-th site, χn is a constant of elec-
tron coupling with displacements un of the n-th site from the equi-
librium position, M is the site’s effective mass, K is an elastic con-
stant. Choosing the wave function � in the form � = ∑N

n=1 bn|n〉, 
where bn is the amplitude of the probability of charge (electron 
or hole) occurrence on the n-th site (n = 1, . . ., N , N is the chain 
length), from Hamiltonian (1) for homogeneous chain we get mo-
tion equations:

ih̄ḃn = νn,n−1bn−1 + νn,n+1bn+1 + χunbn, (2)

ün = −ω2un − χ |bn|2 − γ u̇n + An(t). (3)

Classical subsystem (3) includes a term with friction (γ is a fric-
tion coefficient) and a random force An(t) such that 〈An(t)〉 = 0, 
〈An(t)Am(t + s)〉 = 2kB Tγ δnmδ(s) which simulate a thermostat 
with a temperature T . Such a way of simulating the thermostat 
temperature by Langevin equations (3) is well known [13–15].
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The model parameters corresponding to nucleotide pairs are 
[11,16–24,8]: M = 10−21 g, terahertz frequency of sites oscilla-
tions ω = 1012 s−1 corresponds to rigidity of hydrogen bonds 
K ≈ 0.062 eV/Å

2
, the coupling constant χ = 0.13 eV/Å. In ho-

mogeneous adenine chain the matrix element of the transition 
between neighbor sites is νn,n±1 = −ν , ν = 0.030 eV.

For a given temperature, we computed set of samples (trajec-
tories of system (2), (3) from various initial data and with various 
generated “random” time-series) and calculated the time depen-
dence of the total energy 〈Etot(t)〉 averaged over samples (where in 
individual sample Etot(t) = 〈�|Ĥ |�〉). Individual trajectories were 
calculated in two ways: by 2o2s1g-method [25] and with matrix 
exponential [26] where forced renormalization was added (the to-
tal probability of charge’s occurrence in the system must be equal 
to 1, so variables bn are “corrected” so that 

∑ |bn(t)|2 = 1).
Usually we dealt with two sets, each including 100 samples. 

The first set is calculated from polaron initial data corresponding to 
the lowest energy Epol . The second one – from the uniform distri-
bution |bn(t = 0)|2 = 1/N , for which the velocity and displacement 
of sites were determined from thermodynamic equilibrium distri-
bution for a given temperature. The second variant of the initial 
data at T = 0 corresponds to the highest energy of the system. Cal-
culations were carried out for large time intervals (for more detail, 
see [27]), until the graphs of time dependencies 〈Etot(t)〉 obtained 
for each set of samples became similar. Then the equilibrium value 
of 〈Etot(T )〉 was calculated for a given thermostat temperature T .

Having found 〈Etot(T )〉, we made a numerical estimate of the 
electronic part of the total energy Ee = 〈Etot(T )〉 − NkB T , i.e. we 
subtracted the heat energy of the N chain oscillators from the total 
energy of the system. To assess the heat capacity C V we used two 
methods so that to check the quality of the calculated ensemble 
from which the averages were found:

C V = ∂〈Etot(T )〉
∂T

= 1

kB T 2

(〈E2
tot(T )〉 − 〈Etot(T )〉2).

The results obtained by these two procedures are close. The elec-
tronic heat capacity Ce was calculated by formulae Ce = ∂ Ee/∂T =
CV − NkB .

For various thermostat temperatures, we calculated the value of 
the total energy in thermodynamic equilibrium 〈Etot(T )〉 for polyA 
fragments of different lengths. Fig. 1 shows the results obtained for 
chains of 19, 40 and 60 sites.

Obviously, 〈Etot(T )〉 depends on the chain length N . The elec-
tronic part of the total energy Ee(T ) is also different for chains 
of different lengths. However, the qualitative behavior is similar. 
Fig. 1a shows the results of calculation of Ee(T ). Fig. 1b demon-
strates the dependence of the ratio of Ce and heat capacity of the 
N site chain on chain thermal energy Ce/(NkB).

For T = 0, Ee = Epol , as the temperature grows, Ee(T ) increases 
and a charge passes on from polaron state to a delocalized one. 
The polaron decay temperature depends not only on the model 
parameters but also on the chain length [27]: the larger is N , the 
less is the decay temperature. As the temperature grows still fur-
ther, Ee becomes a constant, which, judging from calculations, is a 
function of the chain length N . This constant is inside the conduc-
tivity band determined by eigenvalues of Wk for a rigid chain (for 
χ = 0) [28]: Wk = −2ν cos{kπ/(N + 1)}, k = 1, . . . , N , and is close 
to zero, i.e. the midpoint of the conductivity band, Fig. 1a.

Fig. 1b suggests that as the chain length increases, the peak 
Ce/(NkB) becomes higher and more sharp, and shifts in respect of 
temperature toward zero.

As T → 0, the normalized electronic heat capacity is inde-
pendent of the chain length and is close to heat capacity of a 
classical site kB (Fig. 1b). Notice that the semiclassical approxima-
Fig. 1. Results of calculations of thermodynamically equilibrium values. a) Electronic 
part of the total energy Ee(T ) for chains of length 19, 40 and 60 sites. Dashed 
lines show polaron energies Epol and the lower bound of the conductivity band 2ν . 
b) Normalized electronic heat capacity.

tion has meaning when the temperature is higher than the Debye 
one 
 (kB
 = h̄ω) [15]. For the DNA parameters used in this work 

 ≈ 8 K. Hence the peaks of electronic heat capacity for N ≥ 40
(Fig. 1b) falls in the range of inapplicability of the model under 
consideration. In short chains (N < 20) the electronic heat capac-
ity peaks will be observed at temperatures T > 
, however they 
are less pronounced. For N = 19, max Ce(T ) ≈ 57kB ≈ 0.0049 eV/K
for T ≈ 30 K, for shorter chains the peak will be still lower.

If we perform rescaling so that the variable x be not the tem-
perature, but the energy of a classical chain Eclass = kB NT = x, 
then as is seen from Fig. 2a, the values of Ee(x) for different N
are located in close proximity to one curve. Fig. 2b shows the 
results of calculation of the normalized electronic heat capacity 
y(x) = Ce(x)/NkB . On this scale the heat capacity peaks coincide 
at abscissa (x ≈ 0.05) for different N . The decrease of y(x) follow-
ing the peak is nearly similar in all the cases. We approximated 
the values obtained by power law y = Const · xb and found b ≈ −2, 
i.e. when a charge in a chain is delocalized the electronic heat ca-
pacity of a charge in a chain of N sites decreases approximately as 
(NT )−2.

The peaks of normalized heat capacity at xcr ≈ 0.05 (Fig. 2b) 
correspond approximately to the energy value Ee = −2ν =
−0.06 eV (bottom of the conductivity band) in Fig. 2a.

In our previous work [27], having calculated the delocalization 
parameter we showed that a polaron in quasi-one-dimensional 
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Fig. 2. Rescaled results of calculations. a) Dependence of the charge energy Ee on 
the energy of a classical chain. b) Dependence of normalized electronic heat ca-
pacity Ce/NkB on the energy of a classical chain. The inset shows the peak of the 
function in more detail.

molecular chains has a characteristic decay temperature depending 
on the chain length. Obviously, this polaron behavior should man-
ifest itself in thermodynamic properties of the electronic part of 
the DNA heat capacity. The peaks of the temperature dependence 
of the electronic heat capacity shown in Fig. 2 just fall into the 
range of polaron decay temperatures. The peak at xcr corresponds 
to the transition between two different types of state. First is the 
polaron state with localized charge (Fig. 2b, left from the position 
of peak xcr). The second type is delocalized state, when the proba-
bility density is randomly distributed along the chain (Fig. 2b, right 
from xcr).

The results of Fig. 2b seem paradoxical at low temperatures, be-
cause at T → 0 the value of the electronic heat capacity Ce is equal 
to the “macroscopic value” NkB if N → ∞. Actually, the upper 
bound of the polaron state xcr is a constant energy, i.e. indepen-
dent of N and T . Thus, the heating energy NkB T for transition 
from polaron state to delocalized one is finite even for infinite 
chain and is equal to xcr .

Based on the results obtained let us assess the possibility of 
measuring the electron part of the DNA heat capacity. We will pro-
ceed from the fact that the present-day high-accuracy calorimetry 
enable one to measure the energy difference of about of attojoules 
(E = 10−18 J) [29]. If we assume that the characteristic energy of 
the polaron state in DNA is ∼5 · 10−2 eV (≈8 · 10−21 J) and one 
polaron occurs in a chain of length less than 100 sites, then we 
get that for the above-mentioned accuracy of measurements, the 
number of polynucleotide fragments measured by a calorimeter 
should be greater than 100. This condition is easily fulfilled for not 
too strongly diluted DNA solutions. In other words, the tempera-
ture dependence of the electronic heat capacity can reasonably be 
measured experimentally. Bearing in mind fast progress in improv-
ing the accuracy of calorimeters it is reasonable to expect that in 
the near future a new branch, such as DNA nanocalorimetry will 
emerge.

An important field of application of electronic DNA nanocalo-
rimetry is to use it for measuring the concentration of current 
carriers in DNA chains playing the role of nanowires. Another es-
sential trend is to use nanocalorimetry for determining nucleotide 
sequences in mapping on the human genome [30].

In this paper we dealt with homogeneous chains. The existence 
of a temperature interval of polaron decay is a general property 
which will take place in inhomogeneous chains too. One would 
expect that in inhomogeneous DNA sequences there is also a peak 
of heat capacity. The location and shape of the peak in this case 
will be highly specific to the location of an electron in a chain 
which makes possible noninvasive electronic way of mapping on 
the human genome.

Acknowledgements

The authors are thankful to the Joint Supercomputer Center of 
RAS for computer resources provided. The work was done with 
partial support from the Russian Foundation for Basic Research, 
projects No. 16-07-00305, 14-07-00894, 15-07-06426, and Russian 
Science Foundation, project 16-11-10163.

References

[1] V. Lakhno, DNA nanobioelectronics, Int. J. Quant. Chem. 108 (11) (2008) 
1970–1981.

[2] A. Offenhäusser, R. Rinaldi (Eds.), Nanobioelectronics – for Electronics, Biology, 
and Medicine, Springer, New York, 2009.

[3] T. Chakraborty (Ed.), Charge Migration in DNA. Perspectives from Physics, 
Chemistry, and Biology, NanoScience and Technology Series, vol. XVIII, Springer, 
New York, 2007.

[4] G. Ithier, E. Collin, P. Joyez, D. Vion, D. Esteve, J. Ankerhold, H. Grabert, Zener 
enhancement of quantum tunneling in a two-level superconducting circuit, 
Phys. Rev. Lett. 94 (5) (2005) 057004.

[5] G. Bruylants, J. Wouters, C. Michaux, Differential scanning calorimetry in life 
science: thermodynamics, stability, molecular recognition and application in 
drug design, Curr. Med. Chem. 12 (17) (2005) 2011–2020.

[6] H. Esfandyarpour, B. Zheng, R. Pease, R. Davis, Structural optimization for heat 
detection of DNA thermosequencing platform using finite element analysis, 
Biomicrofluidics 2 (2008) 024102.

[7] T. Holstein, Studies of polaron motion: part I. The molecular-crystal model, 
Ann. Phys. 8 (1959) 325–342.

[8] N. Fialko, V. Lakhno, Nonlinear dynamics of excitations in DNA, Phys. Lett. A 
278 (2000) 108–111.

[9] S. Alexandre, E. Artacho, J. Soler, H. Chacham, Small polarons in dry DNA, Phys. 
Rev. Lett. 91 (10) (2003) 108105.

[10] E. Starikov, Electron–phonon coupling in DNA: a systematic study, Philos. Mag. 
85 (29) (2005) 3435–3462.

[11] V. Lakhno, Nonlinear models in DNA conductivity, in: E. Starikov, J.P. Lewis, S. 
Tanaka (Eds.), Modern Methods for Theoretical Physical Chemistry of Biopoly-
mers, Elsevier, 2006, pp. 461–481.

[12] Y. Wang, L. Fu, K.-L. Wang, Extended Holstein small polaron model for charge 
transfer in dry DNA, Biophys. Chem. 119 (2) (2006) 107–114.

[13] P. Turg, F. Lantelme, H. Friedman, Brownian dynamics: its application to ionic 
solutions, J. Chem. Phys. 66 (7) (1977) 3039–3044.

[14] E. Helfand, Brownian dynamics study of transitions in a polymer chain of 
bistable oscillators, J. Chem. Phys. 69 (1978) 1010–1018.

[15] P. Lomdahl, W. Kerr, Do Davydov solitons exists at 300 K?, Phys. Rev. Lett. 
55 (11) (1985) 1235–1238.

[16] A. Voityuk, N. Roesch, M. Bixon, J. Jortner, Electronic coupling for charge trans-
fer and transport in DNA, J. Phys. Chem. B 104 (2000) 9740–9745.

[17] J. Jortner, M. Bixon, A. Voityuk, N. Roesch, Superexchange mediated charge hop-
ping in DNA, J. Phys. Chem. A 106 (2002) 7599–7606.

http://refhub.elsevier.com/S0375-9601(16)00198-5/bib62696231s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib62696231s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib62696232s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib62696232s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib62696233s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib62696233s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib62696233s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib62696234s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib62696234s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib62696234s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib62696235s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib62696235s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib62696235s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib62696236s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib62696236s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib62696236s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib62696237s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib62696237s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib62696238s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib62696238s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib62696239s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib62696239s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib6269623130s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib6269623130s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib6269623131s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib6269623131s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib6269623131s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib6269623132s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib6269623132s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib6269623133s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib6269623133s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib6269623134s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib6269623134s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib6269623135s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib6269623135s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib6269623136s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib6269623136s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib6269623137s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib6269623137s1


1550 N. Fialko et al. / Physics Letters A 380 (2016) 1547–1550
[18] P. Borer, S. Pante, A. Kumar, N. Zunatta, A. Martin, A. Hakkinen, G. Levy, 13C-
NMR relaxation in three DNA oligonucleotide duplexes: model-free analysis of 
internal and overall motion, Biochemistry 33 (1994) 2441–2450.

[19] V. Lisy, P. Miskovsky, P. Schreiber, A simple model of low-frequency vibrations 
in DNA macromolecules, J. Biomol. Struct. Dyn. 13 (4) (1996) 707–716.

[20] H. Urabe, Y. Sugawara, M. Ataka, A. Rupprecht, Low-frequency Raman spectra of 
lysozyme crystals and oriented DNA films: dynamics of crystal water, Biophys. 
J. 74 (1998) 1533–1540.

[21] F. Grozema, Y. Berlin, L. Siebbeles, Sequence-dependent charge transfer in 
donor–DNA–acceptor systems: a theoretical study, Int. J. Quant. Chem. 75 
(1999) 1009–1016.

[22] P. Neill, A. Parker, M. Plumb, L. Siebbeles, Guanine modifications following ion-
ization of DNA occurs predominantly via intra- and not interstrand charge 
migration: an experimental and theoretical study, J. Phys. Chem. B 105 (2001) 
5283–5290.

[23] D. Basko, E. Conwell, Self-trapping versus trapping: application to hole trans-
port in DNA, Phys. Rev. E 65 (2002) 061902.
[24] V. Lakhno, V. Sultanov, B. Pettitt, Combined hopping-superexchange model of a 
hole transfer in DNA, Chem. Phys. Lett. 400 (1–3) (2004) 47–53.

[25] H. Greenside, E. Helfand, Numerical integration of stochastic differential equa-
tions II, Bell Syst. Tech. J. 60 (1981) 1927–1940.

[26] E. Sobolev, D. Tikhonov, N. Fialko, On the numerical solution of the discrete 
Holstein model, in: Abstracts of XIX All-Russian Conference “Theoretical Foun-
dations and Designing Numerical Algorithms of Problem Solving in Mathemati-
cal Physics”, dedicated to the memory of K.I. Babenko, September 10–16, 2012, 
Keldysh Institute of Applied Mathematics RAS, 2012, p. 90 (in Russian).

[27] V. Lakhno, N. Fialko, On the dynamics of a polaron in a classical chain with 
finite temperature, Zh. Eksp. Teor. Fiz. (JETP) 120 (2015) 125–131.

[28] V. Lakhno, V. Sultanov, Band structure of the spectra of Hamiltonians of regular 
polynucleotide duplexes, Theor. Math. Phys. 176 (3) (2013) 1194–1206.

[29] O. Bourgeois, S. Skipetrov, F. Ong, J. Chaussy, Attojoule calorimetry of meso-
scopic superconducting loops, Phys. Rev. Lett. 94 (5) (2005) 057007.

[30] H. Esfandyarpour, R. Pease, R. Davis, Picocalorimetric method for DNA sequenc-
ing, J. Vac. Sci. Technol. B 26 (2) (2008) 661.

http://refhub.elsevier.com/S0375-9601(16)00198-5/bib626962313830s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib626962313830s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib626962313830s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib626962313831s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib626962313831s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib626962313832s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib626962313832s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib626962313832s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib626962313833s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib626962313833s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib626962313833s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib626962313834s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib626962313834s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib626962313834s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib626962313834s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib626962313835s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib626962313835s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib626962313837s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib626962313837s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib6269623139s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib6269623139s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib6269623230s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib6269623230s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib6269623230s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib6269623230s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib6269623230s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib6269623231s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib6269623231s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib6269623232s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib6269623232s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib6269623233s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib6269623233s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib6269623234s1
http://refhub.elsevier.com/S0375-9601(16)00198-5/bib6269623234s1

	Temperature dependence of electronic heat capacity in Holstein model of DNA
	Acknowledgements
	References


