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A B S T R A C T

The properties of a Bose gas of translation-invariant (TI) bipolarons analogous to Cooper pairs are considered. As
in the BCS theory, the description of a TI-bipolaron gas is based on the electron-phonon interaction and
Froehlich Hamiltonian. As distinct from the BCS theory, when the correlation length greatly exceeds the mean
distance between the pairs, here we deal with the opposite case when the correlation length is much less than the
distance between the pairs. We calculate the critical temperature of the transition of a TI-bipolaron Bose-gas into
the superconducting state, its energy, heat capacity and heat of the transition. The results obtained are used to
explain the experiments on high-temperature superconductors. Possible ways of raising the critical temperature
of high-temperature superconductors are discussed.

1. Introduction

In this paper a translation-invariant (TI) bipolaron gas is considered
as a gas of Bose particles capable of forming a Bose condensate. As is
shown in [1–3], a TI bipolaron is a state of two electrons coupled by
electron-phonon interaction (EPI) which remains delocalized for any
value of the EPI constant. According to [1–3], this state of electrons is
energetically more advantageous than a self-trapped localized two-
electron state or a Pekar bipolaron.

Since a TI-bipolaron gas is a gas of charged bosons, its Bose con-
densate corresponds to a superconducting (SC) state. This fact is of
interest since nowadays numerous experimental and theoretical papers
on high-temperature superconductivity (HTSC) rely on the idea of bi-
polarons [4–8].

It is important that the TI-bipolaron theory relies on the same initial
Froehlich Hamiltonian that the BCS theory does [9]. The only differ-
ence is that in the BCS theory electrons interact with acoustical pho-
nons, while in the TI-bipolaron theory - with optical ones, because the
properties of HTSC are better explained in terms of this interaction. As
for the difference in the theoretical approaches, the BCS theory is based
on the exclusion of phonon variables from the Hamiltonian and in-
vestigation of the resultant Hamiltonian containing only electron vari-
ables. In the TI-bipolaron gas theory, on the contrary, the electron
variables are excluded from the Hamiltonian which results in the Ha-
miltonian depending only on phonon variables. The spectrum of eigen
values of such a Hamiltonian determines the spectrum of bipolaron
states excitations. The latter is just used to describe the statistic prop-
erties of an ideal bipolaron gas.

This approach, however, raises some important questions. Being

charged, a TI-bipolaron gas cannot be ideal since there must be a
Coulomb interaction between the bipolarons. According to the theory of
a nonideal gas, consideration of an interaction between particles leads
to qualitative changes in the spectral properties of the gas. According to
[10], even in the case of a short-range interaction, consideration of the
latter results in the emergence of a gap in the gas spectrum which is
absent in the ideal gas. Still greater changes would be expected in the
case of a long-range Coulomb interaction. Discussion of these problems
is just the aim of this paper.

The logical scheme of our approach is as follows: a) first we consider
a special case of two electrons interacting with a phonon field. This is
the classical problem of a bipolaron [11]. b) then we deal with a many-
electron problem which leads to the concept of Fermi liquid. For this
many-electron problem we analyze the case of two additional electrons
occurring over the Fermi surface (near it) coupled by the EPI (Coopers
problem) [12]. c) then we believe that almost all the electrons occur-
ring in the [E E E,F pol F+ ] energy layer, where EF is the Fermi energy,
Epol is the polaron energy, are in the TI-polaron state [12]; accordingly
all electrons are in the TI-bipolaron states in narrow energy layer
E E E E E E E[ /2 , /2 ], 0,F bp F bp+ + + where Ebp is the energy of
TI-bipolaron. Condensed bipolaron gas leads to the infinite density of
electronic states in this layer. d) bipolarons are considered to be
charged bosons placed in the electron Fermi liquid (polaron gas) which
screens the interaction between the bipolarons; in this case the problem
is reduced to that of a nonideal charged Bose gas. e) the spectrum ob-
tained upon solving this problem is used to calculate the statistic
properties of a TI-bipolaron gas.

As was noted above, the superconductivity theory is developed as a
theory of a bipolaron Bose gas where the superconducting state is a
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bipolaron condensate. As distinct from an ordinary ideal Bose gas
where superfluidity is absent, an ideal TI-bipolaron gas demonstrates
this phenomenon. Hence, in the theory under consideration, super-
conductivity is a superfluidity of an ideal bipolaron gas. In an ordinary
Bose gas, superfluidity is possible only if bosons interact with one an-
other and usually takes place only at low temperatures. Being super-
fluid, an ideal bipolaron gas retains this property even in the case of its
nonideality.

The considered theory of a bipolaron gas can be used as the basis for
the theory of high-temperature superconductivity. The latter, however,
has some limitations, if for no other reason than because it, like the BCS
theory, deals with the case of a continuous medium. It is important,
however, that being delocalized, a TI bipolaron does not feel discrete-
ness of the lattice, nor the presence of impurities or defects, if the in-
teraction with them is not strong.

If the interaction of electrons with the lattice is strong or, what is the
same, an electron occurring at an atom of the lattice weakly interacts
with neighboring atoms, then the TI bipolaron whose interaction is
based on Froehlich Hamiltonian, breaks. In this case the state of the
electrons is described by discrete models. The most popular super-
conductivity theories developed within this approach are the model of
resonating valence bonds (RVB) and t-J model [13]. They are based on
Hubbard Hamiltonian and its generalization - Hubbard-Holstein Ha-
miltonian. In the continuum approximation the latter is transformed to
Froehlich Hamiltonian which is basic for the TI-bipolaron theory.

The problems of developing the theory of superconductivity as a
theory of Bose condensation with the use of discrete models can be
illustrated by the use of the small-radius bipolaron theory for descrip-
tion of HTSC [4,5]. This theory relies on the idea that a stable bound
bipolaron state is formed at one site of the lattice. The small-radius
bipolarons thus formed are considered as a gas of charged bosons.
However, really this approach can hardly be applied to HTSC since, on
the one hand, for small-radius bipolarons to be formed the electron-
phonon interaction (EPI) constant should be large, but on the other
hand, for high value of Bose condensation temperature we need a small
mass, i.e. a small EPI constant [14–19]. It is clear that the HTSC theory
based on the concept of a small-radius bipolaron which uses any other
(non-phonon) mechanisms of interaction would encounter the same
problems.

The theory developed below will be shown to be free of this
drawback.

The paper is arranged as follows. In §2 we consider a problem of a
nonideal gas of TI-bipolarons which is reduced to the well-known
problem of a charged Bose gas. It is shown that due to screening in the
system under consideration no gap caused by interaction of Bose par-
ticles arises and actually the problem is reduced to that of an ideal gas
of TI-bipolarons having a gap in the spectrum [20].

In §3 we deal with the thermodynamic properties of a TI-bipolaron
gas. For various values of the parameters which are the phonon fre-
quencies, we calculate the values of the critical temperatures of Bose
condensation, the heat of the transition to the condensate state, the heat
capacity and jumps in the heat capacity at the transition point.

In §4 the results are compared with experimental data.
In §5 we sum up the results obtained and discuss possible ways of

raising the critical temperature of high-temperature superconductors.

2. Nonideal TI-bipolaron gas

To develop a theory of a nonideal TI-bipolaron gas we should know
the spectrum of the states of an individual TI bipolaron in a polar
medium. This problem was thoroughly discussed in [11]. As is shown in
[12], this spectrum of the states will be the same as that of TI bipolarons
arising in the vicinity of the Fermi surface. Hence TI bipolarons in the
[E E E/2,F bp F+ ] layer can be considered as a TI-bipolaron Bose gas
occurring in the polaron gas [21]. If we believe that TI bipolarons do
not interact with one another, then the gas can be considered to be

ideal. Its properties will be fully determined if the spectrum of an in-
dividual TI bipolaron is known.

When considering the theory of an ideal gas and the theory of su-
perconductivity on the basis of Bose particles of TI bipolarons, Coulomb
interaction between the electrons is taken into account only for electron
pairs, i.e. only for the problem of an individual bipolaron. Hamiltonian
of such a system, according to [11], has the form:

H
k

k k k0 = +

(1)

E E k M( /2 )(1 )k bp k bp e k,0 0
2

,0= + + + (2)

where ,k
+ αk, -are operators of the birth and annihilation of TI bipo-

larons; ϵk is the spectrum of TI bipolarons obtained in [11]; Ebp is the
energy of a TI bipolaron; M m2 *,e = m* is the electron effective mass;

k( )0 0= is the energy of an optical phonon; 1k,0 = for k 0= and
0k,0 = for k≠0. Expression (1), (2) can be rewritten as:

H E E k M( /2 )bp
k

bp e k k0 0 0 0
2= + + ++ +

(3)

where the prime in the sum in the right-hand side of (3) means that the
term with k 0= is lacking in the summation. Extraction of the term
with k 0= corresponds to the formation of a Bose condensate, where:

N0 0= (4)

N0 is the number of TI bipolarons in the condensed state. Thus, in the
theory of an ideal TI bipolaron gas, the first term is merely EbpN0.

In developing the theory of a nonideal TI-bipolaron Bose gas we will
proceed from the Hamiltonian:

H E N E t

V V t k M

( )

1/2 , /2 ,

bp
k

bp k k
k

k k k

k k k
k k k k k k k k e

0 0

, ,

2

= + + + +

=

+ +

+
+

+

(5)

This is Hamiltonian H0 (3) plus the term responsible for bipolaron in-
teraction; Vk is the matrix element of the bipolaron interaction. The last
two terms in (5) exactly correspond to the Hamiltonian of a charged
Bose-gas [22]. Following the standard procedure of the Bose condensate
resolving, we get from (5):

H E N E

t n V n V

( )

[( ) 1/2 ( )],

bp
k

bp k k

k
k k k k k k k k k

0 0

0 0

= + + +

+ + +

+

+ + +

(6)

where n N V/0 0= is the density of the particles in a Bose-condensate.
Then, using Bogolyubov transformation:

u b v b
u t n V

v t n V n V t t

,
[( )/2 ] ,

[( )/2 ] , [2 ]

k k k k k

k k k k k

k k k k k k k k k

0
1/2

0
1/2

0
2 1/2

=
= + +

= + = +

+

(7)

we get the Hamiltonian:

H E N U E b b

U t n V

( ) ,

( ),

bp
k

bp k k k

k
k k k

0 0 0

0 0

= + + + +

=

+

(8)

where U0 is the ground state energy of a charged Bose gas with no
regard for its interaction with the crystals polarization. Hence, the
spectrum of excitations of a nonideal TI-bipolaron gas has the form:

E E u

k k M k V n M( ) /4 /

(1 ),

k bp

e k e

k

0

0
4 2 2

0

,0

= + +

+ +

(9)
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where u U N/ ,0 0= N is the total number of particles. If we reckon the
energy of excitations from the ground state energy of a bipolaron in a
nonideal gas, on the assumption that E E u( ),k k bp 0= + then Δk for
k≠0 will be:

k k M k V n M( ) /4 /k e k e0
4 2 2

0= + + (10)

The spectrum obtained suggests that a TI-bipolaron gas has a spectrum
gap Δk between the ground and the excited states, i.e. it is superfluid.
Being charged, such a gas will be superconducting. To determine the
particular form of the spectrum we should know the value of Vk. If we
considered only a charged Bose gas with positive homogeneous back-
ground induced by rigid ion backbone, then the value of Vk in (9) would
be equal to V e k4 /k B

2 2= in the absence of screening. Accordingly the
second term in the radical expression in (9) would be equal to

n e M4 / ,p B e
2

0
2= where ωp is the plasma frequency of the boson gas, eB

is the boson charge (2e for a TI bipolaron). Actually, if we take account
of screening, then Vk will take the form of V e k k4 / ( ),k B

2 2= where
ϵB(k) is the dielectric permittivity of a charged Bose gas which was
calculated in [23,24]. The expression obtained for ϵB(k) in [23,24] is
too lengthy and is not given here. In the case of a TI-bipolaron Boson
gas under consideration this modification of Vk is not sufficient. As was
shown in [12], bipolarons are just few charged particles in the system.
Most of the charged particles occur in the electron gas where the bi-
polarons reside. It is just the electron gas that makes the main con-
tribution into the screening of the interaction between the bipolarons.
To take account of this screening Vk should be expressed as
V e k k k4 / ( ) ( ),k B e

2 2= where ϵe(k) is the dielectric permittivity of the
electron gas. Finally, if we consider the mobility of the ion backbone, Vk

will take the formV e k k k4 / ( ) ( ) ,k B e
2 2

0= where ϵ∞, ϵ0 are the high-
frequency and static dielectric permittivities.

As a result, Δk is written as:

k k Me k( ) /2 1 ( )k 0
2= + + (11)

k k k k( ) / ( ) ( )p B e
2 4

0= (12)

To estimate the value of χ(k) in (11) let us consider the long-wave limit.
In this limit ϵe(k) has Thomas-Fermi form: k k( ) 1 / ,e

2 2= + where
k r a0, 815 ( / ) ,F s B

1/2= a M e/ ,B e B
2= r n(3/4 ) ,s 0

1/3= therefore, ac-
cording to [23,24], the value of ϵB(k) is equal to k q k( ) 1 / ,B s

4 4= +
q M2s e p= . Bearing in mind that in calculations of thermodynamic
quantities the main contribution is made the values of k: k2/2Me ≈ T,
(where T is the temperature), the value of χ(k) will be estimated to be
χ∽T/ϵFϵ∞ϵ0, where ϵF is the Fermi energy. Hence the spectrum of the
screened TI-bipolaron gas differs from the spectrum of an ideal TI-bi-
polaron gas (2) only slightly.

Notice that due to screening the value of the correlation energy u0 in
(10) turns out to be much less than the energy calculated in [22]
without regard for screening, and for real values of the parameters,
much less than the bipolaron energy |Ebp|. Notice also that in view of
screening a TI-bipolaron gas does not form the Wigner crystal for ar-
bitrarily small bipolaron density.

3. Statistical thermodynamics of a low-density TI-bipolaron gas

As was shown in §2, a nonideal Bose gas of TI bipolarons differs
from an ideal one only slightly.

Let us consider an ideal Bose gas of TI bipolarons as a system of N
particles occurring in a volume V. Let us write N0 for the number of
particles in the lower one-particle state, and N′ for the number of
particles in the higher states. Then:

N m
e

¯ 1
1

,
n

n
n

E µ T
0,1,2,

( )/n
= =

= … (13)

N N N N
e

N
e

, 1
1

,

1
1

.

E µ T

n
E µ T

0 0 ( )/

0
( )/

bp

i
n

= + =

=
(14)

In this section we will consider ω0 as independent of k.
In the expression for N′ (14), we will perform integration over

quasicontinuous spectrum (instead of summation) and assume µ Ebp= .
As a result from (13), (14) we get an equation for the critical tem-
perature of Bose condensation Tc:

C f T( ˜ ),bp c˜= (15)

f T T F T( ˜ ) ˜ ( ˜ / ˜ ),c c c˜
3/2

3/2=

F x dx
e

( ) 2
1

,x3/2 0

1/2
= +

C n
M

2
*

,bp
e

2/3 2 3/2
=

T T˜
*

, ˜
*

,c
c0= =

where n N V/= . Relation of the notation F3/2 with other notations is
given in the Appendix.

Fig. 1 shows a graphical solution of Eq. (15) for the values of the
parameters M m m2 * 2 ,e 0= = where m0 is the mass of a free electron in
vacuum, * 5= meV (≈ 58K), n 1021= cm 3 and the values: ˜ 0, 21 = ;
˜ 12 = ; ˜ 23 = ; ˜ 10,4 = ˜ 15,5 = ˜ 206 = .

It is evident from Fig. 1 that the critical temperature grows as the
phonon frequency ω0 increases. The relations of the critical tempera-
tures Tci/ω0i corresponding to the parameter values chosen are listed in
Table 1.

Table 1 suggests that the critical temperature of a TI-bipolaron gas is
always higher than that of an ideal Bose gas (IBG). It is also evident
from Fig. 1 that an increase in the concentration of TI bipolarons n will
lead to an increase in the critical temperature, while a gain in the
electron mass m* - to its decrease. For ˜ 0,= the results go over into the
well-known IBG limit. In particular, (15) for ˜ 0= yields the expression
for the critical temperature of IBG:

T n M3, 31 /c e
2 2/3= (16)

It should be stressed however that (16) involves M m2 *,e = rather than

Table 1
Calculated characteristics of Bose-gas of TI-bipolarons with concentration n 1021= cm 3.

i 0 1 2 3 4 5 6

˜ i 0 0,2 1 2 10 15 20
Tci/ωoi ∞ 136,6 30 16 4,2 3 2,5
qi/Tci 1,3 1,44 1,64 1,8 2,5 2,8 3

C T( / ˜)v i, 0,11 0,12 0,12 0,13 0,14 0,15 0,15

C T( 0)v i c, 1,9 2,16 2,46 2,7 3,74 4,2 1,6
C C C( )/s n n 0 0,16 0,36 0,52 1,23 1,53 1,8

n ·bpi cm
3 16 · 1019 9,4 · 1018 4,2 · 1018 2,0 · 1018 1,2 · 1017 5,2 · 1014 2,3 · 1013
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the bipolaron mass. This resolves the problem of the low temperature of
condensation which arises both in the small-radius polaron theory and
in the large-radius polaron theory where expression (16) involves the
bipolaron mass [25–28]. Another important result is that the critical
temperature Tc for the parameter values calculated considerably ex-
ceeds the energy of the gap ω0.

From (13), (14) it follows that:

N
N

T
C

F
T

( ˜) ˜ ˜
˜bp

3/2

3/2=
(17)

N
N

N
N

( ˜) 1 ( ˜)0 = (18)

Fig. 2 shows the temperature dependencies of the number of supra-
condensate particles N′ and the number of particles in the condensate
N0 for the above-listed parameter values ˜ i.

Fig. 2 suggests that, as would be expected, the number of particles in
the condensate grows as the gap increases ωi.

The energy of a TI-bipolaron gas E is determined by the expression:

E m E E N m E¯ ¯
n

n n bp
n

n n
0,1,2,

0
0

= = +
= … (19)

With the use of (14), (15) and (19) the specific energy (i.e. the energy
per one TI bipolaron) E T E N˜ ( ˜) / *,= E E˜ / *bp bp= will be:

( )
( )

E T E

T
C

F µ
T T

F

F

˜ ( ˜) ˜

˜ ˜ ˜
˜

˜
˜ ,

bp

bp

µ
T

µ
T

5/2

3/2
5/2

˜ ˜
˜

3/2
˜ ˜

˜

= +

+
(20)

F x dx
e

( ) 2
1

,x5/2 0

3/2
= +

where µ̃ is determined by the equation:

T F µ
T

C˜ ˜ ˜
˜ bp

3/2
3/2 =

(21)

µ T T
µ T T T

˜ 0, ˜ ˜ ;
˜ ( ˜), ˜ ˜

c

c
=

Relation of µ̃ with the chemical potential of the system μ is written
as: µ µ E˜ ( )/ *bp= . From (20)-(21) we can also get the expressions for
the free energy: F E F F E N E E E N, ,bp bp

2
3= = = and en-

tropy S F T/= .
Fig. 3 illustrates the temperature dependencies of E E E˜ ˜ ˜bp= for

the above-listed parameter values ωi. The salient points on the curves
E T˜ ( ˜)i correspond to the values of critical temperatures Tci.
The dependencies obtained enable us to find the heat capacity of a

TI bipolaron gas: C T dE dT( ˜) ˜/ ˜v = . With the use of (20) C T( ˜)v for T T˜ c̃
is expressed as:

C T T
C T

F
T T

F
T

F
T

( ˜)
˜

2
˜
˜

˜
˜ 6 ˜

˜
˜
˜ 5 ˜

˜ ,v
bp

3/2 2

2 1/2 3/2 5/2= + +
(22)

F
x

dx
e

( ) 2 1
1x1/2 0

= +

Expression (22) yields a well-known exponential dependence of the
heat capacity at low temperatures C Texp( / ),v 0 caused by the
availability of the energy gap ω0.

Fig. 4 shows the temperature dependencies of the heat capacity
C T( ˜)v for the above-listed values of the parameters ˜ i. Table 1 lists the
values of jumps in the heat capacity ˜ i for the same parameter values:

C T
T

C T
T

C T
T

( ˜)
˜

( ˜)
˜

( ˜)
˜

v v

T T

v

T T˜ ˜ 0 ˜ ˜ 0c c

=
= + = (23)

at the transition points.

The dependencies obtained enable us to find the latent heat of the
transition q TS,= where S is the entropy of the supracondensate par-
ticles. At the point of transition this value is equal to:
q T C T2 ( 0)/3,c v c= where Cv(T) is determined by formula (22) and for
the above-listed values of ωi is given in Table 1.

The results obtained can be generalized to the case of a nonideal
charged Bose gas if we replace Ebp by E ubp 0+ and M by M 1 + in
formulas of this section. The results can also be generalized to the case
when the dispersion of ω0(k) takes the form k k( ) (0)0 0

2= + . In this
instance ω0 is replaced by ω0(0) and 1/(2Me) is replaced by

M1/(2 )e+ .

4. Comparison with the experiment

Success of the BCS theory is related to the fact that it has managed
to explain some experiments in ordinary metal superconductors where
EPI is not strong. There are grounds to believe that EPI in high-tem-
perature ceramic superconductors is rather strong [25]-[27] and the
BCS theory is hardly applicable to them. In this case the bipolaron
theory can suit. As is known, Eliashberg theory [28] which was de-
veloped especially to describe superconductors with strong EPI fails to
describe bipolaron states [4,5].

Let us cite some experiments on HTSC which are in agreement with
the TI-bipolaron theory.

According to the main SC theories available thus far (BCS, RVB, t-J
theories [9], [13]), at low temperatures all the current carriers should
be paired (i.e. the density of superconducting electrons coincides with
superfluid density). In recent experiments on overdoped SC [29] it has
been shown that this is not the case: only a small part of current carriers
appeared to be paired. Analysis of this situation made in [30] shows
that the results obtained in [29] do not fit in with the theoretical

Fig. 1. Solutions of Eq. (15) with C 331, 3bp = and ˜ {0, 2; 1; 2; 10; 15; 20},i =
which correspond to T̃ci: T̃ 27, 3c1 = ; T̃ 30c2 = ; T̃ 32c3 = ; T̃ 42c4 = ; T̃ 46, 2c5 = ;
T̃ 50c6 = .
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constructions available. The TI-bipolaron theory of SC developed in this
paper gives an answer to the question of the paper [30], namely where
most of the electrons disappear in the superconductors analyzed. It lies
in the fact that only a small part of electrons nbp: nbp ≌ n|Ebp|/ϵF ≪ n
occurring near the Fermi surface are paired and determine the super-
conducting properties of HTSC materials.

In fact, the theory of strong EPI developed here is not applicable to
overdoped SC where weak EPI coupling is expected and can hardly be
used for explaining experiments on overdoped samples used in [29].
Particularly, in the underdoped samples we cannot expect a linear de-
pendence of the critical temperature Tc on the density of SC electrons
observed in [29]. Rather this dependence would be nonlinear as it
follows from Eq. (15). For the overdoped regime, recently a theory [31]
has been developed on the basis of the Fermi condensation idea [32],
which is a generalization of the BCS theory where the number of SC
carriers was shown to be only a small part of their total number and
which is in agreement with other observations of [29]. Thus we can
conclude that the phenomenon obtained in [29] is rather general and
takes place both in overdoped and underdoped regimes (see also [33]).
We can also expect a linear dependence of the resistivity on T if T> Tc

both in the overdoped and underdoped regimes since the number of
bipolarons is small as compared with the total number of electrons and
if EPI dominates in the homogeneous crystal.

On the contrary to [31] it was shown in recent work [34] that the
linear dependence of Tc on the number of Cooper pairs observed in [29]
in the overdoped La Sr Cu Ox x2 2 crystals can be described by BCS model
for plasmon mechanism of SC. It seems nevertheless that the special
case considered in [31] can not explain the general character of results
obtained in [29].

The problem of inconsistency of BCS with [29] was also considered
in recent work [35] where a simple bipolaron SC model was introduced

and was shown that the number of bipolarons should be much less then
the total number of carriers. The result obtained in [35] confirms our
results that only a small part of carriers are paired in the limit of low
temperatures.

Fig. 3 shows typical dependencies of E T( ˜). They suggest that at the
point of transition the energy is a continuous function of E T( ˜). This
means that the transition per se occurs without energy expenditure
being a phase transition of the 2-kind in complete agreement with the
experiment. At the same time transition of Bose particles from a con-
densate state to a supracondensate one occurs with consumption of
energy which is determined by the value of q (§3, Table 1), determining
the latent heat of the transition of a Bose gas which makes it a phase
transition of the 1-st kind.

By way of example let us consider HTSC YBa2Cu3O7 (YBCO) with
the temperature of transition 90÷93K, volume of the unit cell
0, 1734·10 21cm3, concentration of holes n≈1021cm 3. According to
estimates [36], the Fermi energy is equal to 0, 37F = eV. The con-
centration of TI-bipolarons in YBa2Cu3O7 is found from Eq. (15):

n
n

C f T( ˜ )bp
bp c˜=

(24)

with T̃ 1, 6c = . Table 1 lists the values of nbp,i for the values of para-
meters ˜ i given in §2. It follows from Table 1 that nbp,i < < n. Hence,
only a small part of charge carriers is in a bipolaron state. It follows that
in complete agreement with the results of the previous section, the
Coulomb interaction will be screened by nonpaired electrons which
justifies the approximation of a noninteracting TI-bipolaron gas used by
us.

According to our approach, superconductivity arises when coupled
states are formed. The condition for the formation of such states near
the Fermi surface, by Lakhno [21], has the form: Ebp <0. The value of
the pseudogap, according to §2, will be:

Fig. 2. Temperature dependencies of the relative number of supracondensate
particles N′/N and the particles occurring in the condensate N N N N/ 1 /0 =
for the parameter values ˜ ,i given in Fig. 1.

Fig. 3. Temperature dependencies E T E T E( ˜) ˜ ( ˜) ˜bp= for the parameter va-
lues ˜ i presented in Fig. 1, 2.
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Fig. 4. Temperature dependencies of the heat capacity for various values of the parameters ωi: 00 = ; T̃ 25, 2C0 = ; C T( ˜ ) 2v c1 = ; 0, 21 = ; T̃ 27, 3C1 = ;
C T( ˜ 0) 2, 16v c1 = ; C T( ˜ 0) 1, 9v c1 + = ; 12 = ; T̃ 30C2 = ; C T( ˜ 0) 2, 46v c2 = ; C T( ˜ 0) 1, 8v c2 + = ; 23 = ; T̃ 32, 1C3 = ; C T( ˜ 0) 2, 7v c3 = ; C T( ˜ 0) 1, 78v c3 + = ;

104 = ; T̃ 41, 9C4 = ; C T( ˜ 0) 3, 7v c4 = ; C T( ˜ 0) 1, 7v c4 + = ; 155 = ; T̃ 46, 2C5 = ; C T( ˜ 0) 4, 2v c5 = ; C T( ˜ 0) 1, 65v c5 + = ; 206 = ; T̃ 50C6 = ; C T( ˜ 0) 4, 6v c6 = ;
C T( ˜ 0) 1, 6v c6 + = .
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E ubp1 0= + (25)

Naturally, this value is independent of the vector k , but depends on the
concentration of current carriers, i.e. the level of doping.

In the simplest variant of the superconductivity theory presented
here, the gap ω0 does not change as the system passes on from the
condensed state to the uncondensed one, i.e. from the superconducting
state to the nonsuperconducting one, therefore ω0 has also the meaning
of a pseudogap:

k( )2 0= (26)

which depends on the wave vector k .
Numerous discussions of the problem of a gap and a pseudogap rely

on the statement that the energy gap in HTSC is determined by the
coupling energy of Cooper pairs which leads to insoluble contradictions
(see reviews [37–41]).

Actually, the value of the superconducting gap Δ2 (26) has no
concern with the energy of paired states which is determined by Ebp. As
is shown in [12], the energy of a TI bipolaron is |Ebp|∽α2ω0 for both
small and large values of α i.e. |Ebp| does not depend on ω0 at all.

Thus, within our concept an answer to the question of why the
pseudogap (Δ2) has the same anisotropy as the superconducting gap is
made clear – this is one and the same gap. It also becomes evident why
the gap and the pseudogap depend on temperature only slightly. In
particular, it becomes clear why under a superconducting transition a
gap arises immediately and does not vanish as T Tc= (which is not
typical for the BCS). The oft-debated question of what order parameter
should be put in correspondence to the pseudogap phase (i.e. whether
the pseudogap phase is a special state of the matter [38]) seems
meaningless within the theory developed.

At present there are many methods for measuring the gap: angle-
resolved photoelectron spectroscopy (ARPES), Raman (combination)
spectroscopy, scanning tunnel spectroscopy, neutron magnetic scat-
tering, etc. According to [41], the maximum value of the gap YBCO
(6.6) (in antinodal direction in ab-plane) was found to be Δ1/Tc ≈16.
This gives |Ebp|≈ 80 meV.

Now let us find a characteristic energy of phonons responsible for
formation of TI bipolarons and determining the superconducting
properties of oxide ceramics, i.e. the value of the superconducting gap
Δ2. For this purpose we will compare the calculated values of the heat
capacity jumps with the experimental data (Fig. 5).

As is evident from Fig. 5, the theoretically calculated jump in the
heat capacity (§3) coincides with the experimental values in YBa2Cu3O7

[42], for ˜ 1, 5= i.e. for 7, 5= meV. This corresponds to the con-
centration of TI bipolarons equal to n 2, 6·10bp

18= cm 3. Taking into
account that |Ebp|≈ 0.44α2ω [11], E 80bp = meV, 7, 5= meV the EPI
constant α will be: α≈5, and lies beyond the range of applicability of
the BCS theory.

The availability of a gap ω0 in HTSC ceramics is proved by

numerous spectroscopy experiments (ARPES) on angular dependence of
ω0 on k for small k| | [37]-[41]. The availability of d-symmetry in the
angular dependence of k( )0 is probably concerned with arising of a
pseudogap and rearragement of Fermi system into the system of Fermi
arcs possessing d-symmetry. In experiments on tunnel spectroscopy ω0

can manifest itself as an occurrence of a pseudogap structure super-
imposed on a pseudogap Δ1(Δ1> >ω0). In optimally doped
YBa2Cu3O7 and Bi2Sr2CaCu2O8 (BCCO) such a structure was observed
many times in the region of 5÷10 meV [43–45], which coincides with
the above-cited estimation of ω0.

Many experimenters measure the dependence of the value of a gap
and pseudogap on the level of doping x. Even early experiments on
magnetic responsibility and Knight shift demonstrated the availability
of a pseudogap which arises for T*> Tc. Numerous subsequent ex-
periments revealed peculiarities of T x phase diagram: T* increases
while Tc decreases as doping grows smaller [37]-[41]. As is shown in
[21], this behavior can be explained by peculiarities of the existence of
bipolarons in a polaron gas [21]. In [21] mention is also made of
possibly general character of 1/8 anomaly in HTSC systems.

In conclusion it should be noted that a longstanding discussion of
the nature of the gap and pseudogap in HTSC materials is in many
respects associated with the problem of measurement, when different
measurement methods in fact measure quite different quantities, rather
than similar ones. In the case under consideration, ARPES measures

k( ),0 while tunnel spectroscopy measures |Ebp|. In this field un-
fortunately there are a lot of unsolved problems which offer a challenge
for both the theory and the experiment.

5. Discussion of results

The above considered theory of TI-bipolaron superconductivity as
well as the BCS theory rely on Froehlich Hamiltonian. These theories,
however, have different domains of applicability. In the BCS theory EPI
is considered to be weak, accordingly, the correlation length, or the
characteristic size of the pair is l ncorr bp

1/3> > . The concentration of
bipolarons (i.e. Cooper pairs) nbp in the BCS is very large and for T 0=
coincides with the concentration of charge carriers in metals.

In the above considered theory EPI is considered to be strong,
therefore the correlation length is l ncorr bp

1/3< < . At the same time even
at T 0= bipolarons are only a small part of charge carriers. This si-
tuation is realized in oxide ceramics. The notion of a pair in the TI-
bipolaron theory under these conditions is well determined. Thus, ac-
cording to [2], the value of the correlation length for a TI bipolaron is
l x e M˜ ( )/ ,corr e

2 2= where x ( )( / )0= varies within 6÷10 in the
area of stability of bipolaron states. For the values of parameters cor-
responding to YBCO, it makes up l 10corr

7cm while n 10bp
1/3 6 cm.

Thus: n l 10 1,bp corr
3 3 that is, individual pairs practically do not

overlap.
The results obtained suggest that in order to raise the critical tem-

perature Tc one should either decrease the effective mass of charge
carriers or increase the phonon frequency ω0, or else enhance the
concentration of bipolarons nbp. Hence, the problem of raising Tc is
related to the search for crystals with optimal parameter values. Notice
that an increase in ω0 will not necessarily lead to an increase in Tc, since
an increase in ω0 leads to a decrease in the EPI constant α.

For small α we find ourselves in the field of applicability of the BCS
which yields small Tc. This situation is probably realized in the antic-
orrelation dependence of Tc on ω0 [46].

The most effective way to change the concentration of nbp is to
change the level of doping. In this case both the concentration of charge
carriers n and the concentration of nbp alter. The dependence of nbp(n)
can be rather complicated. In particular, an increase in n does not ne-
cessarily lead to an increase in nbp [21].

To enhance the transition temperature one can apply external
pressure. Enhanced pressure leads to a decrease in the crystal volume

Fig. 5. Comparison of the theoretical (solid line) and experimental (broken
line) dependencies in the region of the heat capacity jump.
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and, accordingly an increase in the concentration of nbp, a decrease in
the effective mass of charge carriers and a rise in the phonon frequency
ω0.

An effective way to raise Tc can be the use of unhomogeneous
doping. Thus, in a wire with cylindrical symmetry, doping as a result of
which the concentration of acceptors is maximal on the cylinder axis,
will lead to an increased concentration of bipolarons along the crystals
axis since a Bose gas will concentrate in the regions with minimal po-
tential energy.

Such conclusions do not account at all for many important factors.
Consideration of EPI alone is not adequate since in HTSC materials of
importance is the availability of a magnetic order. Thus, for example, in
many papers the occurrence of a pseudogap is associated not with EPI,
but with magnetic fluctuations [47]. Consideration of other interactions
such as electron-plasmon interaction can also compete with EPI.

The theory of TI-bipolaron superconductivity as well as the BCS is
based on isotropic 3D model. Actually most cuprates are layered
structures possessing high anisotropy. Generalization of the theory to
this case seems to be rather actual. The situation is complicated by the
fact that in real HTSC materials of great importance are imperfections
such as stripes and clusters. In particular, the availability of stripes
suggests a 1D scenario of superconductivity in oxide ceramics. TI-bi-
polaron mechanism leads in this case to possible existence of a Bose
condensate in 1D systems and, as a consequence, to new opportunities
obtaining of HTSC in materials with long stripes [48].

Let us specify the main conclusions emerging from consistent
translation-invariant consideration of EPI. Electron pairing (for any

coupling constant) based on such consideration leads to a concept of TI
polarons and TI bipolarons. Being bosons, TI bipolarons can experience
Bose condensation leading to superconductivity. Let us point out the
main consequences of this approach. First of all, the theory under
consideration resolves the problem of the great value of the bipolaron
effective mass (§3). As a consequence, formal restrictions on the value
of the critical temperature of the transition are removed. The theory
quantitatively explains some thermodynamic properties of HTSC such
as the availability (§3) and value (§4) of the jump in the heat capacity
which is lacking in the theory of Bose condensation of an ideal gas. It
accounts for a large ratio of the pseudogap width to Tc (§4). The small
value of the correlation length [2] is clarified. The theory explains the
occurrence of a gap and a pseudogap (§3, §4) in HTSC materials. The
angular dependence of a gap and pseudogap (§4) is also clarified.

Accordingly, an isotopic effect straightforwardly follows from ex-
pression (13) where phonon frequency ω0 plays the role of a gap. Ap-
plication of the theory to 1D and 2D systems yields qualitatively new
results since the availability of a gap in the TI bipolaron spectrum
eliminates divergencies which are observed for small impulses in the
theory of an ideal Bose gas [48].
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Appendix A. Remarks on the notation

Function F3/2(α) is called a polylogarithm Li e( ),3/2= in mathematics this is the function PolyLog, therefore the function f ˜ in (15) will be:
f T PolyLog e˜ [3/2, ]T

˜
3/2 ˜ / ˜= .

In the general case, function PolyLog of the order of s is determined as:

PolyLog s e
s

t
e

dt[ , ] 1
( ) 1

s

t0

1
= +

where Γ(s) is a gamma function: (1/2) ,= (3/2) /2,= (5/2) 3 /4= .
Accordingly, the functions F1/2, F3/2, F5/2 occurring in the text will be:
F PolyLog e2 [1/2, ]T

1/2
˜ / ˜= ;

F PolyLog e[3/2, ]T
3/2

˜ / ˜= ;
F PolyLog e3/2 [5/2, ]T

5/2
˜ / ˜= .
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