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Reactions of electron transfer in DNA play an important role in biosynthesis, radiation- induced 

degradation, and post radiation repair of the molecule. However, it was not until recent years that 
experimental studies of electron transfer in DNA were started [1-4]. The results of the studies were found 
to be so controversial that none of presently available theoretical models is able to comprehensively 
describe all of them. The electron transfer between two metal atoms (Ru) intercalated into DNA and 
separated from one another by eight pairs of nucleotide bases was measured in [1, 2]. The electron 
transfer distance between the centers of the metal atoms was 20.5 Å. The distance between the edges of 
the Ru-containing intercalated complexes was substantially shorter (12.5 Å). The rate constant of the 
electron transfer reaction measured experimentally was ket = 1.6 (± 0.4) × 106 s-1. The electron transfer 
rate in the donor-acceptor pairs composed of different reactants with different distances between them 
was measured in [3]. The distances between the reagents were 10.2, 13.1, and 17.0 Å. The rate constant of 
the electron transfer reaction was shown to be an exponential function of the donor-acceptor distance rDA: 

 
ket ~ exp[-β  rDA]                                                                    (1) 

 
where ββ  = 0.9 Å-1. 

Beratan et al. considered the quantum chemical model of this reaction based on the superexchange 
theory and found that ββ  = 1.6 Å-1 [5, 6]. Similar calculations based on experiments conducted by Mead 
and Kayyem gave ββ  = 1.2 Å-1 [5, 6]. However, the theoretical approach developed in [5, 6] fails to 
provide even a qualitative explanation of the results obtained by Barton, Tarro, and others. According to 
these data, the electron transfer distance is 37.4 or 26 Å (distances between centers or edges of Ru- and 
Rh-containing molecular complexes, respectively) [4]. The rate constant of the electron transfer reaction 
was calculated to be ket ≥  109 s-1 [4]. In other words, for the electron transfer distances almost twice 
longer than in experiments described in [1-3], the electron transfer rate measured by Barton, Tarro, and 
others was almost three orders of magnitude higher. Thus, the electron transfer rate dependence on the 
donor-acceptor distance in DNA molecule is nonexponential. 

Numerous experimental data about the intramolecular electron transfer in proteins are also 
consistent with the suggestion of the nonexponential dependence on the donor-acceptor distance [7]. 

The goal of this work was to consider a simple model of the electron transfer reaction in DNA 
based on the collective excited state (CES) superexchange mechanism. This model should be qualitatively 
consistent with experimental data on electron transfer in DNA. 

The self-consistent electron state and electron-induced molecular deformations were considered as 
a DNA CES. The crucial point of the approach considered below is that CES is delocalized over the DNA 
molecule. In other words, there is the minimum possible size of the excited states of this type. If the 
donor-acceptor distance is less than this critical size, these states are unable to mediate the electron 
transfer reaction. 

To provide the required characteristics of CES, consider DNA as an elastic strand bearing an 
electron. Let the displacement in the DNA molecule elements induced by the electron transfer to the 
molecule at point x be u(x). Then, the elastic energy of the strand at the segment of length 2R is 
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where k is the elasticity constant. 
If the electron energy in an undeformed molecule is taken as a zero energy level, the electron 

interaction with deformation may be described as 
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where G is the potential of molecule deformation; ΨΨ(x) is the electron wave function. 

The total energy functional can be written as  
F =Fkin+ Fel + Fint , 

where Fkin is the electron kinetic energy. 
The variation parameters of the total energy functional F are the electron wave function    ΨΨ(x) and 

the displacement amplitude u(x). Assuming that the entire molecule deformation is concentrated within a 
2R segment (i.e., u'( ± R) = 0), the F variation over u(x) would give the following equations for the 
electron-induced equilibrium deformation of the molecule: 

 

,),()()( 22 RxR
k

G
x

k

G
xu ≤Ψ−Ψ=′                                            (4) 

.,0)( Rxxu ≥=′                                                          (5) 

 
In this case, the F variation over the wave function ΨΨ(x) gives Shroedinger's equation. In combination 
with equations (4) and (5), it can be written as 
 

,0)()()]()([)()(
2

22
22

=Ψ−ΨΨ−Ψ×−+Ψ ′′ xWxRxxR
k

G
x

m
θh

                    (6) 

 
where m is the effective mass of the electron; W is the electron energy; θθ(x) is the Heaviside function. 

The nonlinear equation (6) was considered in detail in the preceding works [8, 9], According to [8, 
9], the nonlinear Shroedinger's equation (6) has a discrete set of soliton- like solutions. At R > R1 (R1 is a 
certain critical value), there is a one-soliton solution with a sharp maximum at the origin of the 
coordinates. The one-soliton solution approaches zero as the distance from the origin of the coordinates 
increases. At R > R2 > R1, in addition to the one-soliton solution, there is a two-soliton solution, etc. A 
solution of equation (6) with two sufficiently sharp maximums located at ± 2/3R from the origin of 
coordinates is shown in the figure. Let the electron donor and acceptor be located near the maximums as 
shown in the figure. The electron state in the donor and acceptor is simulated by narrow, deep, 
rectangular potential wells. Thus, the electron can be considered to be completely localized within the 
wells. 

Let ΨΨD be the wave function of the electron donor. Then, the matrix element I of the overlap 
between the donor wave function and state ΨΨ(x) is 
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Wave functions of electron donor and acceptor (ΨΨD and ΨΨA, respectively). ΨΨ(x) is the wave 

function of the self-consistent electron state. 



The value of ΨΨ(xD) is the maximum amplitude of the two-soliton solution. According to [8, 9], at 
sufficiently large R, the value of ΨΨ(xD) is 
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If the width of the rectangular potential well is d and the well itself is deep enough, the wave function ΨΨD 
of the electron donor in the ground state is 
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The overlap integral can be calculated from equation (8) and (9) as 
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According to the superexchange theory, the reaction rate of the electron transfer to an acceptor through an 
intermediate state is proportional to the second power of the matrix element TDA between the acceptor and 
donor: 
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where ∆Å is the energy difference between the electron ground state in the donor and the two-soliton 
state. 

According to [8, 9], the two-soliton state energy can be calculated from equation (6) as 
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The elastic constant k included in these equations can be determined as follows. Characteristic times of 
the longitudinal oscillations of a DNA molecule (ωω) fall within the picosecond range. The amplitudes of 
displacement of the molecular groups of DNA are about 10% of the distance between the neighboring 
groups. Let the distance between the molecular groups (a) be 1 Å and characteristic frequency ωh  be 10-3 
eV. Then, the elastic constant value can be calculated from the following equation: k(u'(a))2a/2 = ωh , 

u'(a) = 0.1 as k = 3.2 × 10-5 dyn. Characteristic values of deformation potential G in solid bodies are from 
1 to 10 eV. Let the G value in DNA be 1 eV. Because the effective electron mass m is 10-27 r, the value of 
|W| calculated from equation (12) is |W| = 0.13 eV. The value of ∆∆E for DNA molecule is ||∆∆E| ≈≈  2 eV [5, 
6]. Assuming that d = 1 Å, it follows from equations (10) and (11) that the matrix element TDA is 3 × 10-4 
eV. The matrix element TDA was calculated in [5] for the experimental conditions studied by Barton, 
Tarro, and coworkers. [4] (reorganization energy, 0.4 eV; free-energy difference between the donor and 
acceptor, ∆∆J = -0.75 eV; and reaction-rate constant, ket = 3 × 109 s-1). The value of the matrix element was 
found to be TDA = 1.9 ×  10-4 eV [5]. According to our calculations, the value of TDA is 3 × 10-4 eV, which 
gives an electron transfer rate twice higher than that value calculated in [4]. However, note that it was 
also observed in [4] that the luminescence quenching of the photoexcited donor is very fast. Therefore, 
the rate of electron transfer from the photo-excited donor should be faster than 3 × 109 s-l. Thus, the 
results of our calculations are in agreement with the experimental data obtained in [4]. It follows from 
equation (11) that, in contrast to the majority of cases described by the superexchange theory, the matrix 
element of the electron transfer process described by the mechanism considered above is not an 
exponentially decreasing function of the electron transfer distance. Moreover, it follows from equation 
(11) that, within the framework of the model considered in this work, the matrix element TDA does not 



depend on the electron transfer distance at all. If this were the case, the electron transfer at infinitely large 
distances would be possible within very short time intervals (about 10-9 s). However, the model 
considered in this work is valid only at distances shorter than a certain threshold value Rmax. 

The threshold value Rmax can be estimated from the following inequality: ω≥hh 2
max

2 Rm . For the 

parameters listed above, Rmax ~ 100 Å. At R > Rmax, the matrix element is a common exponent ial function 

of distance. According to [8, 9], there is also the minimal distance 2122.33 22
min == GmkR h Å, at 

which the state of the type considered above can still be formed. Thus, the nonexponential dependence of 
the rate of electron transfer can be observed within the distance range from 21 to 100 Å, which is in 
agreement with experimental findings. 
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