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Nonlinear dynamics of excitations in DNA
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Abstract

The dynamics of a hole transfer in short fragments of a DNA molecule is considered. The conditions under which irreversible
transition of a hole takes place are found. The transition time of a DNA fragment consisting of 6 nucleotides is calculated to be
∼10−11 s. 2000 Elsevier Science B.V. All rights reserved.
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Recently, we have witnessed increased interest in
the transfer of excitations in DNA [1–9]. Experiments
do not give any unambiguous evidence in favour of
one or other mechanism of this transfer. In particular,
the possibilities are considered for it to proceed either
by a hopping mechanism or by a superexchange
mechanism or by a combination of both [4,5,10–13].
An alternative to all the above is a soliton [14,15] or
a polaron mechanism of a charge transfer in proteins
and DNA [16–18].

In this Letter we model the dynamics of a hole
transfer examining a simple system consisting of a
nucleotide sequence of the form GTTGGG, where G
is guanine, T is timine. Migration of holes was
studied experimentally in the sequences of the form
G1TTG2TTG3 . . .GNTTGGG, where guanine was the
donor of a hole and the guanine triplet GGG was the
acceptor [6,8,9].
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In the case of linear chain under consideration the
initial HamiltonianH has the form [19–21]

H=H + T +U,
H =

∑
i

αia
+
i ai +

∑
i,j

νij
(
a+i aj + a+j ai

)
,

T = 1

2

∑
i

Mi

(
dui

dt

)2

, U =
∑
i

ki

2
u2
i ,

(1)αi = α0
i + α′iui,

wherei runs the values from 1 toN , N is the number
of sites in the chain;a+i , ai are the operators of
creation and annihilation of the excitation at theith
site;H is the operator of the excitation energy;νij are
matrix elements of the transition;α0

i is the excitation
energy at theith site; T is the kinetic energy of
the sites;Mi is the mass of theith site; ui is the
displacement of theith site from the equilibrium
position; U is the potential energy of the sites;ki
are elastic constants. It is believed that excitation
energyαi depends linearly on the site displacement,
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Fig. 1. Time-dependencies of the probabilities|bi |2 of the occurrence of a hole for 6-site model. Att̃ = 0 the hole localized at G1 site. At t̃ ≈ 900
it passes to sites G2G3G4. The final probabilities at G2 and G4 are approximately equal(|bG2|2 ≈ 0.27, |bG4|2 ≈ 0.22), and|bG3|2 ≈ 0.47.
The probabilities at T1, T2 are small during the transition. The insert shows the detailed behaviour of the probability at G1 at the initial time
moments.

α′i has the meaning of the coupling constant between
quantum and classical subsystems.

The equations of motion resulting from Hamil-
tonian (1) in the neighbourhood approximation have
the form

(2)

i
dbi

dt̃
= ηibi + ηi,i+1bi+1+ ηi,i−1bi−1

+ κiω2
i ũibi,

(3)
d2ũi

d t̃2
=−ω′i

dũi

dt̃
−ω2

i ũi − |bi |2.

Here Eqs. (2) present Shrödinger equations for the
probability amplitudesbi describing the excitation
evolution in the deformed chain, and (3) are the
classical motion equations.

The quantities involved in (2), (3) relate to the
parameters of Hamiltonian (1) as
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Fig. 2. Time-dependencies of displacements for the 6-site model. Top: displacements of G1 (black line), T1 (gray line) and T2 (dotted line);
bottom: G2 (black line), G3 (gray line), G4 (dotted line). Displacements at T1 and T2 are small during the transition. Sites gradually tend to
new equilibrium states.

ηi = τα0
i /h̄, ηij = τνij /h̄,

ω2
i = τ2ki/Mi, κiω

2
i = τ3(α′i )2/Mih̄,

ui = βiũi, βi = τ2α′i/Mi, t = τ t̃,
where h̄ is the Plank constant;τ is the arbitrary
time scale relating the timet and the dimensionless
variablet̃ in terms of which the differentiation in (2),
(3) is performed.

According to (2), (3) each site is determined by
four real Coushi equations. The numerical integration
of these equations was carried out by the Runge–
Kutta method with initial values of velocities and site
displacements equal to zero. At the initial moment the
hole was assumed to be localized at G1: |bG1(0)|2= 1,
and the normalization condition

∑
i |bi |2= 1 was used

to make sure that the calculations are accurate.
Figs. 1 and 2 show the solutions of system (2),

(3) for a nucleotide sequence G1T1T2G2G3G4 for
τ = 10−14 s and the values of the parametersα0

Gi
= 0,

α0
Ti
= 0.7 eV, νi,i+1 = 0.12 eV, νij = νji , which is

in agreement with experimental results [6,8,9] and
theoretical estimates [13]. These parameter values
correspond toηGi = 0, ηTi = 11.2, ηi,i+1 = 1.92.
The other parameters were taken to beκi = 4, ωi =

0.01, ω′i = 0.006, which correspond to picosecond
characteristic scales of the DNA motion [22].

According to Fig. 1 the hole which at the moment
t = 0 was at G1 passes to GGG during the time1t ≈
9× 10−12 s.

The only parameters which cannot be estimated
are the coupling constantsκi . The numerical study of
system (2), (3) shows that the transition takes place
only if κi does not exceed a certain critical value. If
so, in some range ofκi values, the hole irreversibly
transfers from G1 to GGG, as is seen from the figure.
At κ � 1 the excitation may occur with relevant
probability either at G1 or at GGG.

Fig. 2 which shows the time dependencies of the
site displacements̃ui gives an illustration of how an
irreversible transfer proceeds. At the initial moment
the displacement at the first site G1 grows thus de-
creasing the energy of the hole at G1. After that,
however, the displacement at the sites G2, G3 and
G4 (exhibiting complicated evolution) increases in
modulus making energetically advantageous localiza-
tion of the hole at the sites GGG. The displace-
ment valuesui(∞) upon completion of the trans-
fer areuG1 = −0.0462 Å, uT1 = −0.0296 Å, uT2 =
−0.0384 Å, uG2 = −0.542 Å, uG3 = −0.926 Å,
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uG4 = −0.417 Å. They correspond to polaron poten-
tial wells 1Ei = h̄κiω2

i ũi/τ : 1EG1 = −0.0058 eV,
1ET1 =−0.0037 eV,1ET2 =−0.0048 eV,1EG2 =−0.068 eV,1EG3 = −0.12 eV,1EG4 = −0.052 eV.
The large value of displacementũG1 at time t̃ ≈ 300
(max|uG1| ≈ 2.3 Å) demonstrates the so-called “open
state” of DNA which can play an important role in the
processes of DNA damage, denaturation and transcrip-
tion [22–24]. The joint evolution of the excitation and
deformation illustrates the polaron mechanism of the
excitation transfer in DNA fragments.

The results obtained provide support for the idea
[25] of a possibility of fast (6 ns) long-range transi-
tions of excitations in polynucleotide chains.
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