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Bipolaron energy is calculated for various distances between the centers of polarization wells of
two polarons with accounting the electron correlations. A singlet bipolaron is stable at a rather
high energy of ion binding h � hm � 0:143, h ¼ e1=e0 (e1 and e0 are the high-frequency and static
dielectric constants, respectively). The unique energy minimum corresponds to a one-center bipo-
laron (analog of a helium atom). The bipolaron binding energy constitutes up to 25.8% of a dou-
ble polaron energy at h ! 0. A triplet bipolaron (analog of ortho-helium) is energetically disad-
vantageous. The one-center configuration of a triplet bipolaron corresponds to a maximum on the
distance dependence of the total energy JBpðRÞ. The exchange interaction between polarons has
antiferromagnetic character. A prediction is made about a possibility of Wigner crystallization of a
polaron gas, which occurs with antiferromagnetic ordering in the polaron system.

1. Introduction

The bipolaron problem has revived again due to the discovery of high-temperature
superconductivity (HTSC). Unfortunate numerical errors made in earlier papers de-
voted to bipolarons (see, for example, review [1]) were corrected in [2]. The energy
minimum obtained in [2] for a one-center bipolaron (or Pekar bipolaron [3]) was much
lower than a corresponding minimum originally found in [4] for a two-center bipolaron.
In terms of a spatial configuration, a one-center is analogous to a helium atom, while a
two-center bipolaron is an analog of a hydrogen molecule. Subsequently the results of
[2] were repeatedly reproduced for both Slater and Gaussian functions [1, 5–7].

The deciding factor in choosing a bipolaron probe wave function (WF) in variational
calculations was its nonmultiplicative form. For a two-center bipolaron the probe WF
was chosen [4] as a symmetrized product of one-electron WFs. For a one-center bipo-
laron correlation effects were taken into account by introducing a term depending on
the difference in the electron coordinates [2, 5, 6] (in what follows this particular type
of correlation effects will be referred to as electron correlations).

However, until the present time no calculations have been performed to take into
account both effects at the same time. Therefore the question, which of the two bipo-
laron configurations is energetically more advantageous, still remains open. Thus, the
works [8, 9] continue to explore a two-center bipolaron (despite the fact that the
authors of [2] obtained a deeper minimum for a one-center bipolaron than in [8, 9]). A
quantitative estimate of the contribution of electron correlations into the energy of two-
electron systems of the type of large-radius paired centers in polar crystals (F2-center
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or ‘‘a hydrogen molecule placed in a phonon field”) is yet to be obtained, too. To solve
the problems of this sort one should consider both the permutation symmetry of the
WF and the electron correlation at the same time.

The energy of a one-center bipolaron can be calculated with the use of wave func-
tions of Pekar type [3]

Yðr1; r2Þ ¼ Nð1 þ gr12Þ ð1 þ ar1Þ ð1 þ ar2Þ exp ð�aðr1 þ r2ÞÞ ; ð1Þ

where N is a normalization multiplier, r1; r2 are the coordinates of the first and the
second electrons, respectively, r12 ¼ jr1 � r2j is the distance between the first and the
second electron, r1 ¼ jr1j, r2 ¼ jr2j, g and a are variational parameters.

The bipolaron energy is calculated analytically and the relevant functional is subse-
quently varied over the parameter g (a is uniquely determined by g). The deciding
factor in the formation of a bound two-electron state is the availability of a correlation
term proportional to the difference in the electron coordinates gr12.

Calculations of a two-center bipolaron are concerned with the consideration of the
permutation symmetry of the electron system. The wave function of the two-electron
system is chosen in the symmetrized form

Yðr1; r2Þ ¼ Fðr1; r2Þ þFðr2; r1Þ : ð2Þ
In early papers devoted to the calculation of bipolaron states, Fðr1; r2Þ was chosen as

a product of hydrogen-like WFs centered at various points [4]. In the recent paper [8],
which deals with the calculation of a two-center bipolaron, Fðr1; r2Þ is chosen as a pro-
duct of Pekar polaron functions ð1 þ ara1Þ exp ð�ara1Þ ð1 þ arb2Þ exp ð�arb2Þ (where use
is made of the notation traditional for the two-center coordinate system: ra1ðra2Þ is the
radius-vector of the first (second) electron reckoned from the center a, rb1ðrb2Þ is the
same for the center b). Both in [4] and in [8] the energy minima were much higher
than a corresponding minimum obtained in [2] with the use of the wave function (1).
The essence of variational calculations suggests, that preference should be given to the
WF, which gives a deeper energy minimum. However final conclusions, which of two
bipolarons is more energetically advantageous can be made only in the case, when the
electron correlations in the wave function (2) are taken into account. This means the
choice

Fðr1; r2Þ ¼ ð1 þ ara1Þ ð1 þ arb2Þ ð1 þ gr12Þ exp ð�aðra1 þ rb2ÞÞ : ð3Þ
However, though the wave function (3) has rather a simple form, one runs into se-

vere obstacles when trying to find analytically the two-center integrals. Therefore the
problem of a two-center bipolaron cannot be solved in the way as it was done for a
one-center bipolaron. But if the WF is chosen in the form of a combination of Gaussian
orbitals, analytical calculations become straight forward and the problem is reduced to
a variation of a multiparametric functional.

Recently the interest in the polaron and bipolaron subject field has surfaced again
due to an expansion of this field of investigations to anisotropic crystals, low dimen-
sional structures and systems with quantum wells [7, 10–13]. The problem of the choice
of a bipolaron spatial configuration and consideration of electron correlations is actual
for such systems, too.

The aim of this work was to calculate the bipolaron energy depending on the dis-
tance between the centers of polarization wells taking into account both electron corre-
lations and the permutation symmetry of the electron system.
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2. Main Formulae and Relations

Let us choose the Hamiltonian of a system consisting of two electrons and a phonon
field in the form

H ¼ �hw
P
k

aþk ak þ
P
k
Vkðak � aþ�kÞ ðexp ðikr1Þ þ exp ðikr2ÞÞ

� �h2

2m*
D1 �

�h2

2m*
D2 þ

e2

e1jr1 � r2j
; ð4Þ

where Vk ¼ �i
e

k

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2p�hw
V~ee

r
,

1
~ee
¼ 1

e1
� 1
e0

, V is the crystal volume, w is the frequency of

optical phonons, k is the wave vector of the phonons, aþk and ak are the operators of
creation and annihilation of phonons with the wave vector k, r1, and r2 are electron
coordinates.

The first term in (4) corresponds to the Hamiltonian of the field of optical phonons,
the second one represents the Hamiltonian of the electron–phonon interaction in a
two-electron system written in the Fröhlich form, the third and the fourth terms stand
for the kinetic energy of electrons, the last term describes the Coulomb repulsion of
electrons.

Canonical transformation of the Hamiltonian (4) exp Sað ÞH exp �Sað Þ with
Sa ¼

P
k

Ckðaþk � akÞ and variation over parameters Ck (shift transformation) yields the

following expression for the functional of the bipolaron ground: state

�HH ¼ �VVee þ �TT þ
P
k

U2
k

��hw
; ð5Þ

�VVee ¼ Yðr1; r2Þ
e2

e1r12

����
����Yðr1; r2Þ

� �
; ð6Þ

�TT ¼ � �h2

2m*
Yðr1; r2Þh j D1 þ D2 Yðr1; r2Þj i ; ð7Þ

Uk ¼ Vk Yðr1; r2Þh j exp ðikr1Þ þ exp ðikr2Þ Yðr1; r2Þj i : ð8Þ

In what follows we will use effective atomic units, i.e. the unit of energy will be
e4m*=�h2e2

1 and the unit of length will be effective Bohr’s radius a*0 ¼ �h2e1=m*e2.
Summing the functional (5) over the wave vector and integrating it we express it in

the form traditional for bipolaron problems

JBp ¼ �TT þ �VVee þ �VVef ; ð9Þ

�VVef ¼ � 2e2

~ee

ð
Yðr1; r2Þj j2 Yðr3; r4Þj j2

r13
dt12 dt34 : ð10Þ

Note, that in this formulation of the problem we do not use the concept of adiabatic
approximation anywhere. We perform variational calculations of the initial Hamiltonian
(4), which after canonical transformation changes to functional (5). A transformation of
this sort leads to the results of the strong-coupling limit and gives the first term in the
expansion of the polaron (bipolaron) energy in terms of 1=a (where a is the Fröhlich
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binding constant, a � 1) proportional to a2,

a ¼ e2

�h~ee

ffiffiffiffiffiffiffiffiffiffi
m*

2�hw

s
: ð11Þ

The probe WF will be chosen as a linear combination of Gaussian orbitals

YSðr1; r2Þ ¼ Fðr1; r2Þ þ ð�1ÞS Fðr2; r1Þ ; ð12Þ

where S ¼ 0 for the singlet state (symmetric with respect to the operation of permuta-
tion of electron coordinates) and S ¼ 1 for the triplet (antisymmetric) bipolaron state.

In turn

Fðr1; r2Þ ¼
Pn
i¼1

Ci exp �a1ir
2
a1 � 2a2iðr1 � r2Þ � a3ir

2
b2

� �
; ð13Þ

where r1ðr2Þ is the radius-vector of the first (second) electron reckoned from the coor-
dinate origin placed halfway between the points a and b. The axis 0z is directed from
the center a to the center b. The distance between the points a and b is equal to R. The
quantities Ci, a1i, a2i, a3i are variational parameters. The electron correlations are taking
into account by the term 2a2i r1 � r2ð Þ in (13), r1 � r2ð Þ is the scalar product of vectors r1

and r2.
The polaron WF is chosen in the form

Yp rð Þ ¼
Pn
i¼1

ci exp ð�air
2Þ ; ð14Þ

where ci, ai are variational parameters.
In going to a one-center bipolaron at a1i ¼ a3i the WF (13) is equivalent (with an

accuracy of the notation of variational parameters) to the WF used in [5] for a one-
center bipolaron and in the limit case of the absence of anisotropy it coincides with the
wave function suggested in [6] for the calculation of the energy of a one-center bipolar-
on in anisotropic crystals.

3. Calculation Results

3.1 Singlet bipolaron

Quantitative analysis of correlation effects can conveniently be carried out with the use
of the wave function (13) with five exponents.

Figure 1 shows the dependencies of the energy of the ground (singlet) state on the
distance between the centers of polarization wells of two polarons at h ¼ 0 (curve 2). It
is seen, that as the distance between the polarons increases, the functional of the bipo-
laron system breaks down into functionals corresponding to the two polarons, the bipo-
laron energy tends to doubled polaron energy calculated in this approximation
(�0:1085128), and the importance of electron correlations decreases. Figure 1 also dis-
plays the dependencies of corresponding energies for the system without regard for
electron correlations at h ¼ 0 (curve 1). In going to the multiplicative form at R ¼ 0
(curve 1 is calculated for a1i ¼ a3i, a2i ¼ 0 and corresponds to the symmetrized product
of the polaron WF), the bipolaron functional breaks down into a doubled polaron func-
tional, and the unique minimum at R 6¼ 0 corresponds to a two-center bipolaron. Tak-
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ing into account electron correlations
result in a unique minimum at R ¼ 0,
which corresponds to a one-center bi-
polaron (curve 2 calculated for
a1i 6¼ a3i, a2i 6¼ 0), so the two-center
bipolaron obtained without regard
for electron correlations is associated
with a less appropriate choice of the
WF.

As the number of exponents in ex-
pression (13) increases, the qualita-
tive picture shown in Fig. 1 does not

change. The unique energy minimum corresponds to the one-center configuration as
before.

Figure 2 shows the dependencies of various contributions into the bipolaron energy
(kinetic energy TðRÞ, energy of electron–electron interaction VqðRÞ, phonon contibu-
tion into the total energy VfðRÞ) for five terms of the wave function (13).

So, a two-center bipolaron is energetically disadvantageous in an isotropic crystal,
and the energy minimum arising at
R > 0 [4, 8, 9] is associated with an
inappropriate choice of the WF with-
out electron correlations.

In many papers relative values of
the bipolaron binding energy are gi-
ven (in the units of polaron energy
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Fig. 1. Distance dependence of the bipo-
laron energy: curve 1 – without regard for
the correlation (a1i ¼ a3i, a2i ¼ 0, n ¼ 5),
curve 2 – the most general function (var-
iational parameters a1i, a3i, a2i, n ¼ 5)

Fig. 2. Dependence of various contribu-
tions into the bipolaron energy on the dis-
tance between the centers of polarizations
wells. TðRÞ is the bipolaron kinetic en-
ergy, VqðRÞ is the energy of interelectron
interaction, VfðRÞ is the phonon contribu-
tion into the bipolaron energy (TðRÞ > 0,
VqðRÞ > 0, VfðRÞ < 0). JBpðRÞ is the total
bipolaron energy. The calculations are per-
formed for variational parameters a1i, a3i,
a2i, n ¼ 5



calculated in the same approximation) which leads to a misunderstanding in comparing
the values of energy minima obtained by different authors. To remedy this we give
absolute values of the energy found with the use of various WFs.

The Pekar function (1) leads at h ¼ 0 to the ground state energy JBp ¼ �0:1346292.
The polaron binding energy is given by

DE ¼ JBp � 2Jp : ð15Þ

Or, in relative units DE=2Jp � 0:241, where Jp ¼ �0:0542564 is the exact value of the
polaron energy obtained numerically in the limit of strong binding in [14]. This value of
Jp with all the significant digits is found with the use of a polaron WF in the form (14)
for n ¼ 5. The region of existence of the bipolaron for a Pekar WF is determined by
h � hm ¼ 0:132.

In [2] absolute values of the ground state energy are not given, and slightly overesti-
mated results for the binding energy and the region of existence of the bipolaron
(DE=2Jp � 0:25, hm � 0:14) were associated with the fact that the bipolaron energy was
calculated with respect to a slightly overestimated value of the polaron energy obtained
for the WF chosen in the form 1 þ arð Þ exp �arð Þ.

The best value of the energy of the bipolaron ground state obtained by us at h ¼ 0
(n ¼ 11) was

JBp ¼ �0:136512 ; ð16Þ

or in dimensionless units DE=2Jp � 0:258, hm � 0:143.
In the strong-coupling regime the present approach provides a larger binding energy

and a broader region of the bipolaron stability than those obtained in [2, 4, 5, 8, 15].
Figure 3 shows the dependencies DEðRÞ (singlet state) for different h.
The results obtained will be generalized to crystals with intermediate electron–pho-

non coupling in a special paper. Notice only, that the conclusion about the energetic
disadvantage of a two-center bipolaron remains unchanged [16]. A generalization of the

results obtained by the strong cou-
pling method to the range of inter-
mediate values of the electron–pho-
non interaction parameter a with the
use of the formula

Ji ¼ 2JBpa
2�hw ; ð17Þ

(where JBp corresponds to the bipo-
laron energy in the strong coupling
limit), naturally gives underestimated
values for the bipolaron energy and
the critical parameter hm as com-
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Fig. 3. The bipolaron binding energy as a
function of distance between the centers
of polarization wells for various para-
meters h



pared to the results obtained by the all-coupling methods [15, 17]. Thus, the lowest
values of the bipolaron energy for a < 9 are obtained in [17], where at a ¼ 7, JBp is
calculated to be �16:28�hw, while formula (17) yields �13:38�hw.

Notice that the variation parameter a, which is treated in [17] as the mean distance at
which electrons fluctuate, is analogous to the variation parameter R used in this paper.
Our results correlate well with the fact, that the only energy minimum of a bipolaron
corresponds to a ¼ 0 [17].

In the range 9 < a < 25, the lowest value of the bipolaron functional corresponds to
the results of [15] and for 25 < a the upper bound of the bipolaron energy is deter-
mined by the formula (17).

3.2 Exchange interaction between polarons

We have calculated the energy of a triplet term of bipolaron (one-center configuration of
triplet bipolaron is analog of ortho-helium). As the distance between the centers of po-
larization wells increases, the energy of the triplet term of a bipolaron (WF (12) at S ¼ 1)
monotonically decreases in complete analogy with the 3Su-term of a hydrogen molecule.
At R ¼ 0 the distance dependence of the energy exhibits rather a sharp maximum
(Jor ¼ �0:076072 at h ¼ 0), which suggests instability of a triplet 23S state which can be
arise, for example, under nonequilibrium conditions during an exchange scattering at
bipolarons of zone electrons. In this case bipolarons break down into isolated polarons.

Note also that the use of the WFs (12), (13) for the calculation of the energy of pair-
and ortho-helium has enabled us to get full agreement with experimental results, which
suggests a considerable flexibility of the WFs used.

Noteworthy is the occurrence of antiferromagnetic (AF) exchange interaction be-
tween polarons. At rather large distances the WF of a polaron can be presented as a
symmetrized (singlet state) or antisymmetrized (triplet state) product of polaron WFs.
Then the interaction energy of two polarons has the form (with an accuracy of the
terms quadratic in overlapping integral K)

Eint ¼ E1 � JexS1S2 ; ð18Þ

where S1 and S2 are spins of the first and the second electron,

E1 ¼ 1
e0

ð
a 1ð Þ2b 2ð Þ2

r12
dt12 ; ð19Þ

Jex ¼ 1
e1

K1 �
4
~ee

K2K ; ð20Þ

K1 ¼
ð
að1Þ bð1Þ að2Þ bð2Þ

r12
dt12 ; K2 ¼

ð
að1Þ bð1Þ bð2Þ2

r12
dt12 ;

K ¼
Ð
að1Þ bð1Þ dt1 ;

where we use the notation traditional for two-center coordinate systems: að1Þ, bð1Þ are
the WFs of a polaron centered at points a and b respectively (a 1ð Þ � Yp ra1ð Þ,
b 1ð Þ � Yp rb1ð Þ).

The first term in (20) corresponds to ferromagnetic Coulomb exchange, the second
one describes antiferromagnetic (AF) interaction between polarons caused by phonon
contributions.
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Thus, at large distances (if e0 � e1, Jex � �3K2=e1R) polarons push off and the
spin-depending part of the interaction (total exchange) has AF character. Therefore
Wigner crystallization accompanied by AF ordering can occur in a polaron system.

It also follows that for a bipolaron state to be formed the potential barrier should be
overcome.

AF interaction between polarons can be responsible for the decrease in the paramag-
netic component in the magnetic susceptibility of a polaron gas as the polaron concen-
tration increases even though bound bipolaron states are not formed.

Instability of triplet bipolaron with respect to its breaking down into individual polar-
ons obtained by us in the framework of Fröhlich Hamiltonian describing the interaction
of electrons with optical phonons does not exclude a possibility for the formation of
triplet states in a two-electron system caused by the interaction of electrons with ele-
mentary excitations of different nature, for example, with spin waves. The formation of
self-localized electron states in antiferromagnetics with low Neel temperature (‘‘spin
polaron” in an AF crystal) was considered in [18, 19]. The author of [20] proposed, that
high-temperature superconductivity is associated just with spin polarons, which form a
bound state by full analogy with a bipolaron.
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Editors notes

� The English had to be polished somewhat, please check.
� Is pair helium correct or should it be instead para helium (page 8, last line).
� Are there some further information for Ref. [3]. Is it a Patent?
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