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INTRODUCTION

Interest in polarons was rekindled after the discov-
ery of high-temperature superconductivity (HTSC).
Some vexatious computational errors made in early
papers on the subject of bipolarons (see review [1])
were corrected in [2]. The minimum found in [2] for the
energy of the single-center bipolaron (or the Pekar
bipolaron [3]) is significantly lower than the energy
minimum of the two-center bipolaron first considered
in [4]. Later, the results of [2] were reproduced in [5]
using both Pekar and Gaussian functions. In spatial
configuration, the single-center bipolaron is similar to a
helium atom and the two-center bipolaron, to a hydro-
gen molecule.

Since the energy of the ground state of the single-
center bipolaron was found to be significantly lower
than that of the two-center bipolaron, investigation of
the molecular configuration of the bipolaron has virtu-
ally ceased. We may only cite the papers by Mukho-
morov (see, e.g., [6, 7] and references therein), in which
the study into the two-center configuration was contin-
ued despite the fact that the energy minimum found in
[2] was considerably lower than that obtained in [6, 7].
However, the energy of the two-electron system as a
function of the distance between the centers of the
polarization potential wells of two polarons has not yet
been investigated with allowance for electron correla-
tions (here and henceforth, electron correlations are

taken to mean an explicit dependence of the wave func-
tion (WF) of the two-electron system on the distance
between the electrons).

When the dependence of the energy of a system of
two polarons on the distance between the centers of the
two polarization wells is calculated using the varia-
tional method, preference should be given to the deep-
est minimum. In solving this problem, success will be
achieved if, by taking into account electron correla-
tions, we reproduce (or improve) the results of varia-
tional calculations performed to date for any distance
between the centers of the polarization wells. Only in
that case can one answer the question of whether the
atomic or molecular bipolaron configuration is favor-
able.

Recently, interest in the subject of polarons and
bipolarons has also been inspired by studies on the
properties of these particles in anisotropic crystals,
low-dimensional structures, and systems with quantum
wells [8–13]. The proper choice of the bipolaron con-
figuration and the electron correlation effect are also of
importance in such systems.

2. BASIC EQUATIONS

The Hamiltonian of the system consisting of two
electrons and a phonon field is taken in the form
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—The energy of a large bipolaron is calculated for various spacings between the centers of the polar-
ization potential wells of the two polarons with allowance made for electron correlations (i.e., the explicit
dependence of the wave function of the system on the distance between the electrons) and for permutation sym-
metry of the two-electron wave function. The lowest singlet and triplet 2
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 are the high-frequency and static dielectric constants, respectively). There is a single
energy minimum, which corresponds to the single-center bipolaron configuration (similar to a helium atom).
The binding energy of the bipolaron for 
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effective mass of a band electron), or 25.% of the double polaron energy. The triplet bipolaron state (similar to
an orthohelium atom) is energetically unfavorable in the system at hand. The single-center configuration of the
triplet bipolaron corresponds to a sharp maximum in the distance dependence of the total energy 
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); there-
fore, a transition of the bipolaron to the orthostate (e.g., due to exchange scattering) will lead to decay of the
bound two-particle state. The exchange interaction between polarons is antiferromagnetic (AFM) in character.
If the conditions for the Wigner crystallization of a polaron gas are met, the AFM exchange interaction between
polarons can lead to AFM ordering in the system of polarons. 
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Here, 
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 is the volume of the crystal; 
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 is the frequency
of an optical phonon; 
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 is the wave vector of a phonon;
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 are the creation and annihilation operators,
respectively, for a phonon with wave vector 
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respectively; 
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 are the position vectors of the
electrons; and 
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* is the effective mass of an electron.

In Eq. (1), the first term is the Hamiltonian of optical
phonons, the second term is the Frölich electron–
phonon interaction Hamiltonian for the two-electron
system, the third and fourth terms are the kinetic energy
of the electrons, and the last term describes the Cou-
lomb repulsion between the electrons.

We perform a canonical transformation of the
Hamiltonian (1) exp(
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 (characterizing the shift transforma-
tion), and take the average over the phonon variables.
As a result, we obtain the following functional for the
ground state of the bipolaron:
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In what follows, atomic units with an energy unit
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2 as a unit of length are used.
As a trial WF, we take the following linear combina-

tion of Gaussian functions:

(3)

(4)

where S = 0 for the singlet state (symmetric with
respect to the permutation of the coordinates of the
electrons) and S = 1 for the triplet (antisymmetric) state
of the bipolaron and r1(r2)is the position vector of the
first (second) electron, with the origin taken at a point
midway between the points a and b (the centers of the
polarization wells). The z axis passes from the point a
to the point b. The distance between these points is R.
The quantities Ci, a1i, a2i, and a3i are variational param-
eters. Electron correlations are taken into account by
the term exp[–2a2i(r1r2)] in Eq. (4). The polaron WF is
taken in the form

(5)

where ci and αi are variational parameters.

3. RESULTS OF COMPUTATIONS

3.1. Singlet Bipolaron

Figure 1 shows the dependence of the energy of the
ground (singlet) state of the bipolaron on the distance
between the centers of the polarization wells calculated
for η = ε∞/ε0 = 0 using wave function (3) with n = 5 in
Eq. (4) without regard for electron correlations (a1i =
a3i, a2i = 0, i = 1, …, n) and with allowance for them. It
can be seen from Fig. 1 that as the distance between the
polarons increases, the effect of electron correlations
decreases; the energy functional of the bipolaron
approaches the product of the two functionals corre-
sponding to two noninteracting polarons and the bipo-
laron energy tends to twice the polaron energy calcu-
lated within this approximation (Jp = –0.0542564). We
note that this value of the polaron energy is calculated
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Fig. 1. Dependence of the bipolaron energy on the distance
between the centers of the polarization wells (1) without
and (2) with regard for electron correlations calculated for
n = 5 in Eq. (4).
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by us using a polaron wave function approximation (5)
with five exponentials and exactly reproduces the result
obtained in [14].

Thus, the minimum corresponding to the two-center
bipolaron state in the distance dependence of the
energy calculated without regard for electron correla-
tions (curve 1 in Fig. 1) is due to a poor choice of the
trial electron wave function. Such minima were consid-
ered in [4, 6, 7]. We note that, to our knowledge,
Vinetskiœ and Gitterman [4] were the first to demon-
strate (on the basis of microscopic calculations) the
possible existence of a bipolaron, which sets off their
paper from the later publications devoted to bipolarons,
in spite of the fact that the choice of the trial WF in [4]
was not the best.

When comparing the results of variational calcula-
tions based on different trial WFs, one should compare
the absolute values of the minima of the energy func-
tional under study. However, the binding energy is pre-
sented, as a rule, in units of the polaron energy calcu-
lated within the same approximation. The results
obtained in [2] using the Pekar trial WF Ψ(r1, r2) =
N(1 + γr12)(1 + αr1)(1 + αr2)exp(–α(r1 + r2)) were
reproduced in [5]. With this trial function, it was found
that ∆E/2Jp ≈ 0.22 for η = 0. The binding energy of the
bipolaron is defined as ∆E = JBp – 2Jp, where Jp = –
0.0542564 is the exact value of the polaron energy cal-
culated in [14] using a numerical method within the
strong-coupling approximation. The region of exist-
ence of the bipolaron with the Pekar trial WF is η ≤ ηm

= 0.125. In [2], the absolute values of the ground-state
energy of the bipolaron were not presented and the
binding energy and the range of existence of the bipo-
laron (∆E/2Jp ≈ 0.25, ηm ≈ 0.14) were somewhat over-
estimated, because the binding energy of the bipolaron
was calculated using a somewhat overestimated value
of the polaron energy, which was found for the trial WF
in the form (1 + αr)exp(–αr). The bipolaron binding
energy for η  0 presented in [15] is also overesti-
mated (∆E/2Jpol ≈ 0.22, Jpol = 1/6π), because the calcu-
lations were performed for the polaron WF taken in the
form of a single Gaussian. If we replace Jpol by the exact
strong-coupling approximation value of Jp for the two-

electron WF ϕ(r1, r2) = N(1 + γ )exp(–µ2(  + ))
used in [15], we will obtain ∆E/2Jp ≈ 0.193.

The absolute value of the ground-state energy found
by us using WF (3) with n = 11 in Eq. (4) is Jbp = –
0.136512 or, in dimensionless units, ∆E/2Jp ≈ 0.258,
and ηm ≈ 0.143.

Figure 2 shows the dependence of the bipolaron
binding energy on the distance between the centers of
the polarization wells for various values of η and n = 5
in Eq. (4).

r12
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3.2. Triplet Bipolaron

When studying photoconductivity in YBCO, Dev-
ing and Salje [16] observed a wide absorption band in
the infrared region with a peak near 5.5 × 103 cm–1 and
assigned this peak to transitions of bosons from the
ground (singlet) state to the excited metastable triplet
state. It was also assumed in [16] that, in addition to sin-
glet bipolarons, there exist triplet bipolarons in a certain
temperature range and that it is the triplet bipolarons
that are responsible for the broadening of the NMR
lines of Cu and O in YBCO. The population of the trip-
let levels was assumed to increase with temperature, so
that at T ≈ 200 K, the conductivity was due predomi-
nantly to the triplet bipolarons. Later, the change in the
shape of the conductivity versus temperature curve pre-
dicted in [16] was indeed observed in the vicinity of the
temperature indicated above (see review [17] and refer-
ences therein).

We calculated the energy of the triplet bipolaron
(similarly to an orthohelium atom). The lowest numer-
ical value of the energy obtained using WF (3) for η =
0 for the single-center (R = 0) configuration of the trip-
let bipolaron was Jor = –0.076082.

As the distance between the centers of the polariza-
tion wells increases, the energy corresponding to the
triplet bipolaron term decreases monotonically (in per-
fect analogy with the 3Σu term of the hydrogen mole-
cule). At R = 0, a fairly sharp peak is observed on the
energy versus distance curve. This peak is indicative of
the instability of the triplet 23S state, which can occur,
for example, under nonequilibrium conditions where
exchange scattering of band electrons by bipolarons
takes place. In this case, bipolarons break down into
single polarons.
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Fig. 2. Dependence of the bipolaron binding energy on the
distance between the centers of the polarization wells calcu-
lated for various values of the ionic-bond parameter η and
n = 5 in Eq. (4).
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3.3. Interaction between Polarons
at Large Distances

Now, we will show that there is antiferromagnetic
(AFM) exchange interaction between polarons. Indeed,
at sufficiently large distances between polarons, the
correlation effects become insignificant and the bipo-
laron WF can be written as a symmetrized or antisym-
metrized product of the polaron WFs for the singlet and
triplet states, respectively. In this case, to within the
terms quadratic in the overlap integral K, the interaction
energy of the two polarons has the form

(6)

where S1 and S2 are the spins of the first and second
electrons

(7)

(8)

Here, we introduced the notation common for two-cen-
ter systems: a(1) and b(1) are the polaron WFs centered
at the points a and b, respectively; i.e., a(1) ≡ Ψp(ra1)
and b(1) ≡ Ψp(rb1).

In Eq. (8), the first term corresponds to ferromag-
netic Coulomb exchange and the second term describes
AFM interaction between the polarons via phonons.

Thus, at large distances, the polarons repel each
other and the spin-dependent part of the interaction
(total exchange) is antiferromagnetic in nature (at
η  0, we have E1 ≈ 1/ε0R, Jex ≈ –3K2/R). We also
note that there is a potential barrier to the formation of
the bipolaron state.

4. DISCUSSION

Thus, polarons repel one another at large distances
and, therefore, a system of polarons may behave as an
electron gas with Coulomb repulsion between particles.
If the concentration of polarons is sufficiently low, a
transition may occur (as in an electron gas [18]) to the
Wigner crystal state, provided that kBT < e2/ε0a (a is the
distance between particles). There are a number of
papers devoted to the Wigner crystallization of a
polaron gas. For example, it was shown in [19, 20] that
a system of polarons (considered within a continuum
approximation) can crystallize into a hexagonal lattice
with a period which depends on the polaron concentra-
tion, as in the Wigner theory. In [21], the stability of the
polaronic Wigner crystal was investigated and the pos-
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sibility of the insulator–superconductor transition in the
process of destruction of a polaron lattice was substan-
tiated theoretically. Without going into details, we will
simply note that when the conditions for the Wigner
crystallization are met, the AFM exchange interaction
between polarons can cause AFM ordering to occur in
a system of polarons. Antiferromagnetism in the elec-
tronic Wigner crystal was discussed in [22, 23].

The AFM interaction between polarons can also
lead to a decrease in the paramagnetic component of the
magnetic susceptibility of a polaron gas with increasing
polaron concentration, even if bound bipolaron states
do not arise.

The instability of the 23S term of the bipolaron with
respect to its decay into single polarons, shown by us in
terms of the Fröhlich Hamiltonian describing the inter-
action of electrons with optical phonons, does not rule
out the possible formation of bound triplet states of the
two-electron system [13] or the existence of triplet
bipolarons resulting from the interaction of electrons
with elementary excitations of other types, e.g., with
spin waves. The formation of self-localized electronic
states in antiferromagnets with a low Néel temperature
(a spin polaron in an AFM crystal) was considered in
[24, 25]. In [17], it was supposed that high-temperature
superconductivity is due to a triplet bound state of spin
polarons, which forms in much the same way as the
bipolaron.

Based on the Fröhlich Hamiltonian, we can consider
only large polarons and bipolarons. The continuum
approximation is applicable if the effective polarization
potential in which self-trapped electrons move varies
smoothly over distances of the order of the lattice con-
stant b [3]. In [3], the effective polarization radius rp of
an electron was defined as the length over which the
self-consistent polarization potential decreases by a
factor of 2. For the simplest, hydrogenic, polaron WF,
we have rp ≈ 10�2 /m*e2.

The continuum approximation can be applied if rp >
b. In the opposite case of rb ≤ b, the spatial dispersion
of the dielectric constants ε0 and ε∞ becomes signifi-
cant; the difference in value between ε0 and ε∞
decreases with decreasing size of the region of polaron
localization, and we have ε0 ≈ ε∞ ≈ 1. In most ionic
crystals, SrTiO3, and layered cuprates (along an “easy-
plane” direction), the value of rp is approximately 3–5
lattice constants.

The spatial dispersion of the dielectric constants can
be included in a qualitative way by using the phenome-
nological interpolation model by Inkson [26]. In this
case, an increase in the electron–phonon coupling is
compensated by the dielectric-constant dispersion; as a
result, if we take into account only the interaction of
electrons with optical phonons, the case of rp ≤ b is not
realized in nearly all ionic crystals. It should also be
noted that spatial dispersion of the dielectric constants
(in the case of polarons and bipolarons of an intermedi-

ε̃
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ate radius) causes the bipolaron binding energy to
decrease in absolute value, whereas any anisotropy of
the crystal increases the ratio ∆E/2Jp [8, 9].

Interaction of carriers with acoustic phonons [27] or
with short-wavelength optical phonons may lead to the
formation of self-trapped states of a small radius. In this
case, the continuum model is inadequate. Small-radius
bipolarons treated within the strong-coupling approxi-
mation and superconductivity caused by their Bose
condensation in narrow-band metals were considered
in [28]. When considering such states, the binding
energy of the bipolaron is generally taken to be a phe-
nomenological parameter. Various aspects of the large-
bipolaron theory as applied to the HTSC problem are
discussed in [1, 8, 9, 29]. Review [17] is concerned with
small-bipolaron states. In [19, 20], a system of large
bipolarons in a layered high-temperature superconduc-
tor is treated as a Wigner crystal, in which plasma oscil-
lations occur and favor carrier pairing in the conducting
layers.
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