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INTRODUCTION

Two-electron 

 

D

 

–

 

 centers in semiconductors (in Si
and Ge [1–3], in GaAs, InP, and InSb [4]) are observed
when studying the frequency dependence of photocon-
ductivity in the far-infrared region. An atomic analogue
of the considered system is the negative ion of hydro-
gen, H

 

–

 

, with an ionization energy equal to 0.0555 Ry.
If chemical shift and electron–phonon interaction are
disregarded, the 

 

D

 

–

 

 centers in crystal have the same
energy but measured in the effective rydberg Ry* =

 

m

 

*

 

e

 

4

 

/2

 

�

 

2

 

 (where 

 

m

 

* is the effective electron mass,
and 

 

ε

 

0

 

 is the static dielectric constant of the crystal).
Taking the interaction with phonons into account can
result in a significant increase in the binding energy of
a two-electron system in crystal in comparison with the
value of 0.0555 Ry* [5, 6]. In alkali halide crystals, the

 

F

 

' centers are similar to a 

 

D

 

–

 

 center [7].

Recently, studies of the energy structure of two-
electron systems have been also extended to low-
dimensional systems, including quantum dots [8, 9]
and clusters [10, 11]. The energy levels of quasi-two-
dimensional systems, which are similar to the 

 

D

 

–

 

 cen-
ters [14–17] and bipolarons [18] in isotropic crystals,
have been studied both experimentally [12, 13] and the-
oretically. This partly is connected with the fact that
interest in similar systems has considerably increased
recently in relation to the development of nanotechnol-
ogies and the possibility of developing quantum com-
puters based on electron spin resonance [19–21] partic-
ularly in Ge–Si structures [21].

ε0
2

 

In the first studies [7, 22] devoted to the calculation
of the energy of two-electron formations, electronic
correlations were disregarded that considerably low-
ered the binding energy of a 

 

D

 

–

 

 center. Nevertheless,
the Bu

 

œ

 

mistrov–Pekar method [22] for calculating the
energy of one- and two-electron states in crystals with
an arbitrary coupling force of the electron system with
phonons is, in our opinion, one of the simplest and most
effective methods for calculating the energy spectrum
of electron systems in the solid state.

Due to its simplicity, this method is used quite fre-
quently for calculating the energy of specific systems
for both one- and two-electronic states in crystals with
an arbitrary coupling force of electrons with phonons
[5, 23–25]. Nevertheless, it is generally believed that
the Bu

 

œ

 

mistrov–Pekar method yields less precise values
of the energy of two-electron systems in comparison
with the method of optimized canonical transformation
suggested by Adamowski [6], which presently gives the
lowest values for the energy of two-electron systems
(bipolarons and 

 

D

 

–

 

 centers or bound bipolarons). We
will show that with a fairly flexible trial electron wave
function (WF), which accounts for interelectronic cor-
relations (direct dependence of the WF on the electron–
electron distance), the method of the Bu

 

œ

 

mistrov–Pekar
yields lower values than the Adamowski method for the
entire range of parameters of electron–phonon interac-
tion. The latter circumstance makes it possible to use the
above method combined with a tested set of wave func-
tions, which are convenient for analytical calculations,
for reliable computation of the energy of two-electron
systems (

 

D

 

–

 

 centers, bipolarons, and exchange-coupled
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Abstract

 

—The energy of the lowest singlet and triplet terms of shallow-level 

 

D

 

–

 

 centers (two electrons
bound at a singly charged Coulomb center) in semiconductors with ion bonding is theoretically analyzed.
Electron–phonon interaction is described by the Fröhlich Hamiltonian. The 

 

D

 

–

 

-center energy is calculated
by the Bu

 

œ

 

mistrov–Pekar method of canonical transformations for an arbitrary coupling force with phonons.
It was shown that, for the entire range of electron–phonon interaction parameters, the Bu

 

œ

 

mistrov–Pekar
method gives the lowest values of the ground-state energy of the 

 

D

 

–

 

 centers and the free bipolaron in com-
parison with the best available numerical computations of these values which were performed using direct
variational methods. The calculations showed the absence of both bound metastable triplet states, corre-
sponding to the lowest triplet term of a 

 

D

 

–

 

 center, and a bipolaron for the entire range of parameters of elec-
tron–phonon interaction. This is consistent with the Hill theorem concerning the absence of bound excited
states of an H

 

–

 

 ion. 
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pairs of paramagnetic centers) in anisotropic crystals
and in low-dimensional systems with an arbitrary con-
stant of electron–phonon coupling. Previously, this set
of functions [26] was tested during the calculation of
the bipolaron energy in crystals with an anisotropic
effective mass and dielectric constant under conditions
of strong electron–phonon coupling.

2. BASIC RELATIONS

In what follows, we use the Feynman system of
units in which 

 

�

 

 = 1, 

 

ω

 

 = 1, and 2

 

m

 

* = 1. Hence, 

 

�

 

ω

 

 is

a unit of energy and 

 

L

 

0

 

 =  is a unit of length.
The Hamiltonian of the 

 

D

 

–

 

 center (or bound bipolaron
in [6]) can be written as

(1)

where 

 

r

 

j

 

 is a radius vector of the 

 

j

 

th electron with an
effective mass 

 

m

 

* and 

 

r

 

12

 

2 is the electron–electron dis-
tance. We assume that the Coulomb charge is concen-
trated at the origin. The effect of polarization of a crys-
tal on the Coulomb field of a static charge is taken into
account by introducing the static dielectric constant 

 

ε

 

0

 

.
The optical dielectric constant 

 

ε

 

∞

 

 is included in the
operator of the electron–electron interaction, and

(

 

a

 

k

 

) is the creation (annihilation) operator of a longi-
tudinal optical phonon with a wave vector 

 

k

 

. We
assume that the phonon frequency is independent of 

 

k

 

and is equal to 

 

ω

 

; 

 

α

 

 is the Fröhlich dimensionless cou-
pling constant, and 

 

V

 

 is the crystal volume.

 

2.1. The Bu

 

œ

 

mistrov–Pekar method Applied
to Two-Electron Systems in Polar Crystals

with Intermediate Electron–Phonon Coupling

 

In a present-day representation, the Bu

 

œ

 

mistrov–
Pekar method amounts to application of the canonical
transformation exp(

 

α

 

S

 

)

 

H

 

exp(–

 

α

 

S

 

) with the unitary
operator

�/2m*ω0

H ak
+ak

β
r12
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k
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2– γ

r j

----–
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where Fk(r1, r2) is a function of the coordinates of the
electronic system, to the Hamiltonian (1). Then, the fol-
lowing expressions are valid:

After averaging over the phonon variables, we obtain
the following functional:

(2)

Expression (2) is initial for further calculations. Let
us choose the function Fk as

(3)

where Ck and γk are the variational parameters.
Having substituted (3) in (2) and variating over Ck

and γk (in contrast to the Buœmistrov–Pekar method [6],
the parameters Ck and γk are selected in a specified ana-
lytical form), we obtain the following expression for
the functional of the ground state of a two-electron sys-
tem:

(4)

(5)

(6)

(7)

(8)

Here, Ji is an addition appropriate for intermediate cou-
pling, and JS corresponds to the D–-center functional in
the limit of strong electron–phonon coupling.

(9)
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(11)

(12)

2.2 The Functional of the Ground State
of a Two-Electron System

Choosing fk(r1, r2) = (r1, r2) and, hence,  = Uk,
we obtain

(13)

In the specific case of the absence of electronic cor-
relations, when the WF of an electronic system can be
written as the product of one-electron WFs Ψ(r1, r2) =
ψ(r1)ψ(r2), relation (13) yields

(14)

where

Having substituted (14) in (4), we obtain a func-
tional coinciding with formula (18) from the Buœmis-
trov and Pekar paper [22].

With a more general choice of the WF (a nonmulti-
plicative form corresponding to a consideration of elec-
tronic correlations), it is necessary to use a more gen-
eral functional in which the addition, which is appropri-
ate for intermediate coupling Ji, is defined by
expression (13).

In a recent publication [27], which was concerned
with the two-center bipolaron of intermediate coupling,
the electron WF was selected in the form of a symme-
trized product of the polaron wave functions centered at
different points, i.e., in a nonmultiplicative form (the
Heitler–London method applied to a bipolaron). Thus,
the functional with a Ji addition defined by Eq. (14) was
used for variation. This is correct only for the specific
case when the WFs of a two-electron system are chosen
as the product of one-electron WFs. Notably, Mukho-
morov [27] varied the incorrect functional and per-
formed erroneous numerical calculations. The correct
formulas for calculating the bipolaron energy using the
Buœmistrov–Pekar method were given in [24]; however,
the trial function chosen in [24] for the entire range of
electron–phonon interaction parameters yielded a
higher bipolaron energy in comparison with the results
in [28].
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3. NUMERICAL CALCULATIONS

Let us choose a two-electron WF as a linear combi-
nation of Gaussian orbitals:

(15)

where P12 is an interchange operator for the electron
coordinates; and the exponent is equal to S = 0 and 1 for
singlet and triplet states of a two-electron system,
respectively. The WF of a polaron and F center is cho-
sen as

(16)

where Ci, ai, a1i, a2i, and a3i are variational parameters;
r are the electron coordinates in a polaron; r1 and r2 are
coordinates of the first and second electron in a bipo-
laron, respectively; and N12 and N1 are normalization
factors.

In the limit η  0 (η = ε∞/ε0, where ε∞ and ε0 are
optical and static dielectric constants, respectively) the
coupling of electrons to the Coulomb core weakens and
the D– center becomes equivalent to a one-center bipo-
laron or to a Pekar bipolaron. The one-center configu-
ration of a bipolaron can be considered as an elemen-
tary two-electron system in a crystal. At the same time,
the functional of this system includes the most complex
component describing nonlocal interaction of the two-
electron system with the phonon field. From this point
of view, the addition of interaction with the field of
static charge only insignificantly complicates the
numerical calculations of the energy spectrum of a
bound polaron or D– center.

Bipolaron energies EBp, calculated using the system
of Gaussian functions (15) (S = 0), are summarized in
Table 1. For the entire domain of existence of a bipo-
laron, the Buœmistrov–Pekar method yields the lowest
ground-state energies for a free bipolaron and the wid-
est region of existence for a bound bipolaron in com-
parison with the best numerical calculations of these
parameters performed using direct variational methods

[28]. For comparison, numerical calculations of ,
performed in [28], are also listed in Table 1. The num-
ber of terms N = 5 in the WF (15) used for calculating
the bipolaron energy.

When considering a bound bipolaron in a system, an
additional parameter describing the interaction of elec-
trons with the field of static charge appears. Let us
express the energy of the D– center as a function of two
dimensionless parameters: the Fröhlich electron–phonon
coupling constant α = e2/(2r0�ω)  (where 1/  = 1/ε∞ –

1/ε0, r0 = , �ω is the frequency of long-

Ψ r1 r2,( ) 1
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------------ Ci 1 1–( )SP12+[ ]
i 1=

N

∑=

× a1ir1
2– 2a2ir1r2 a3ir2

2––( ),exp

Ψp r( ) 1
N1
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wavelength longitudinal optical phonons, and m* is the
effective electron mass) and the ratio of the effective
rydberg to �ω given by

As an example, Table 2 lists the energies of the
ground state of the D– (S = 0) and D0 centers: E– and E0,
respectively, for a number of crystals. The binding
energy is designated as EB. All energies are expressed
in �ω. The superscripts L and A define the parameters
obtained in [5] and [6], respectively. The number of
terms in expressions (15) and (16) for the WF, which
were used to calculate the energy of D– and D0 centers,
equals 12.

In order to assess the flexibility of the WFs used for
calculating the energy of two-electron systems, we
used these WFs to calculate the ground-state energy of
the negative hydrogen ion H– (this atomic system is the
closest analogue of a bipolaron in atomic physics). This
energy is equal to –1.055470 [N = 28 in (15)], whereas
the precise value is equal to –1.055502 [29].

The possibility of forming metastable triplet states
of D– centers should be considered separately. This
matter has assumed great importance because the

R m*e4/2ε0
2
�

3ω e2/2r0�ωε0( )2
.= =

absence of bound triplet states of D– centers (similar to
the absence of bound excited states of the H– ion [30])
is one of the basic conditions for realizing the detection
of the spin state of a two-electron system in quantum
computers operating on the basis of electron spin reso-
nance [21]. The scheme proposed in [21] can be briefly
described as follows: the application of an electric field
along the line connecting a singlet-state exchange-cou-
pled pair of shallow-level paramagnetic centers, can
cause the controlled charge transfer to one of the Cou-
lomb centers and to the formation of a D– center. In the
triplet state, similar combination is impossible. Donors
remain neutral, and there is no charge transfer between
centers. Due to this circumstance, the spin state of the
two-electron system can be observed.

Variatonal calculations with the use of a system of
functions (15) for S = 1 showed that, for the entire range
of parameters of electron–phonon interaction, includ-
ing the region of extremely strong coupling (α > 20),
the relation Ep + ED ≤ EDt is valid, where Ep, ED, EDt are
the energies of a polaron, a neutral donor and a D– cen-
ter in the triplet state, respectively. Thus, electron–
phonon interaction in the continuous approximation
does not lead to the formation of a metastable triplet
state of the D– center. This is a close analogy to the the-

Table 1.  The ground-state energy of free bipolaron for various parameters α

η

α

6 7 9 20

EBp EBp EBp EBp

0 –12.703 –12.601 –16.234 –16.067 –24.927 –24.652 –111.928 –110.504

0.01 –12.595 –12.487 –16.053 –15.91 –24.650 –24.354 –110.497 –109.064

0.1 –14.598 –14.500 –22.068 –21.756 –96.878 –95.335

Note: The parameters  are taken from [28].

EBp
A EBp

A EBp
A EBp

A

EBp
A

Table 2.  The ground-state energy of the D–-center (bound bipolaron) in �ω units.

Crystal α R �ω, meV E– E0 /

CdTe 0.272 0.657 21.08 –1.266 –0.965 0.029 0.693 0.042

CdS 0.529 0.783 38.0 –1.931 –1.363 0.039 0.834 0.047

ZnSe 0.45 0.924 31.4 –1.926 –1.428 0.048 0.978 0.049

AgBr 1.64 1.68 15.4 –5.656 –3.818 0.198 2.178 0.091

–5.637L –3.817L 0.180L 2.177L 0.083L

0.132A 2.166A 0.061A

AgCl 1.9 1.90 24.4 –6.668 –4.483 0.285 2.583 0.110

–6.643L –4.482L 0.261L 2.582L 0.101L

–6.662A 0.202A 2.560A 0.078A

CdF2 2.53 1.274 50.0 –7.357 –4.510 0.317 1.98 0.016

Note: Superscripts L and A indicate the results of calculations in [5] and [6], respectively.

EB
– EB

0 EB
– EB

0
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orem concerning the absence of bound excited states of
a negative hydrogen ion H– [30]. Our calculations
showed that the bound state of the triplet bipolaron that
formed as a result of coupling to optical phonons is also
energetically unfavorable. Our test calculations of the
orthohelium energy, with the use of the system of func-
tions (15) for S = 1, show that there is good agreement
with the experimental values of the orthohelium energy.

It should be noted that an external magnetic field
gives rise to upper excited states of the D– center [31].
Calculations of the triplet states of the D– center in
spherical quantum dots were performed in [8].

4.CONCLUSIONS
The chosen system of Gaussian functions in combi-

nation with the Buœmistrov–Pekar method of calcula-
tions yields lower D– center energies and enables one to
perform calculations of the energy spectrum of more
complex two-electron systems, such as exchange-cou-
pled pairs of paramagnetic centers, and also obtain reli-
able values of the ground-state energy of paramagnetic
centers and their complexes in anisotropic crystals and
low-dimensional systems.

ACKNOWLEDGMENTS
This study was supported by the Russian Founda-

tion for Basic Research, project no. 01-07-90317.

REFERENCES
1. S. Narita, J. Phys. Soc. Jpn. 49, 173 (1980).
2. P. J. Dean, J. R. Hayes, and W. F. Flood, Phys. Rev. 161,

711 (1967).
3. P. Gross, M. Gienger, and K. Lassmann, Jpn. J. Appl.

Phys. Part 1 26, 673 (1987).
4. C. J. Armistead, S. P. Najda, and R. A. Stradling, Solid

State Commun. 53, 1109 (1985).
5. D. M. Larsen, Phys. Rev. B 23, 628 (1981).
6. J. Adamowski, Phys. Rev. B 39, 13 061 (1989).
7. S. I. Pekar, Investigations on Electron Theory of Crystals

(GITTL, Moscow, 1951; Report AEC-tr-5575, U.S.
Atomic Energy Commission, 1963).

8. B. Szafran, B. Stebe, J. Adamowski, and S. Bednarek,
Phys. Rev. B 60, 15 558 (1999).

9. B. Szafran, J. Adamowski, and B. Stebe, J. Phys.: Con-
dens. Matter 10, 7575 (1998).

10. V. D. Lakhno, Izv. Ross. Akad. Nauk., Ser. Fiz. 60, 65
(1996).

11. V. D. Lakhno, Izv. Ross. Akad. Nauk., Ser. Fiz. 62, 1091
(1998).

12. S. Holmes, J. P. Cheng, B. D. McCombe, and W. Schaff,
Phys. Rev. Lett. 69, 2571 (1992).

13. Z. X. Jiang, B. D. McCombe, J.-L. Zhu, and W. Schaff,
Phys. Rev. B 56, R1692 (1997).

14. D. M. Larsen and S. Y. McCann, Phys. Rev. B 45, 3485
(1992).

15. J. M. Shi, F. M. Peeters, and J. T. Devreese, Phys. Rev. B
51, 7714 (1995).

16. I. K. Marmorkos, V. A. Schweigert, and F. M. Peeters,
Phys. Rev. B 55, 5065 (1997).

17. J. M. Shi, F. M. Peeters, G. A. Farias, et al., Phys. Rev. B
57, 3900 (1998).

18. S. Mukhopadhyay and A. Chatterjee, J. Phys.: Condens.
Matter 8, 4017 (1996).

19. A. Barenco, D. Deutsch, and A. Ekert, Phys. Rev. Lett.
74, 4083 (1995).

20. D. Loss and D. P. DiVincenzo. Phys. Rev. A 57, 120
(1998).

21. R. Vrijen, E. Yablonovitch, K. Wang, et al., Phys. Rev. A
62, 012 306 (2000).

22. V. M. Buœmistrov and S. I. Pekar, Zh. Éksp. Teor. Fiz. 32
(5), 1193 (1957) [Sov. Phys. JETP 5, 970 (1957)].

23. R. S. Brandt and F. C. Brown, Phys. Rev. 181, 1241
(1969).

24. P. Zh. Baœmatov, D. Ch. Khuzhakulov, and Kh. T. Shari-
pov, Fiz. Tverd. Tela (St. Petersburg) 39 (2), 284 (1997)
[Phys. Solid State 39, 248 (1997)].

25. S. A. McGill, K. Cao, W. B. Fowler, and G. G. DeLeo,
Phys. Rev. B 57, 8951 (1998).

26. N. I. Kashirina, E. M. Mozdor, É. A. Pashitskiœ, and
V. I. Sheka, Izv. Ross. Akad. Nauk., Ser. Fiz. 52 (8), 127
(1995).

27. V. K. Mukhomorov, Opt. Spektrosk. 86, 50 (1999) [Opt.
Spectrosc. 86, 41 (1999)].

28. J. Adamowski and S. Bednarek, J. Phys.: Condens. Mat-
ter 4, 2845 (1992).

29. A. J. Thakkar and V. H. Smith, Jr., Phys. Rev. A 15, 1
(1977).

30. R. N. Hill, Phys. Rev. Lett. 38, 643 (1977).
31. D. M. Larsen, Phys. Rev. B 20, 5217 (1979).

Translated by I. Kucherenko

SPELL: OK


