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Buimistrov-Pekar method of canonical transformation was used to calculate the
energies of the lowest singlet and triplet terms of bipolarons in crystals with ion
binding. An arbitrary electron-phonon interaction described by Fröhlich Hamilto-
nian was considered. It was shown that in the whole parametric range of electron-
phonon interaction, the value of the free bipolaron ground state energy obtained
by Buimistrov-Pekar method is the lowest than those found in the framework of
direct variational approaches [1] and only slightly exceed (relative error < 0.3%)
the ones obtained by integration over trajectories for α ≤ 7 [2].

The calculations have shown that any metastable triplet states corresponding
to the lowest triplet term of a bipolaron are absent for all the parameters of
the electron-phonon interaction, the results being in complete analogy with Hill’s
theorem about the absence of any bound excited states for an H− ion [3].

The study of the wave function of a more general form has demonstrated that

a two-center bipolaron is energetically less advantageous than a one-center one

for all the parameters of the electron-phonon interaction. Control calculations

performed with the system of functions used in the paper have yielded 1.173 a.u.

for the hydrogen molecule energy which is in good agreement with the experimental

value.

1 Introduction

A bipolaron is a simplest two-electron system in polar crystals. For this
reason it is very suitable to test the methods of calculation of electron systems
for which the interaction with a field of elementary excitations of the crystal
is of importance. An example is given by a field of optical phonons, the
interaction with which is described by Fröhlich Hamiltonian. Some other
examples of the fields in question are acoustical phonons, plasmons, spin
waves, discharge density waves, etc.

Bipolaron subject-matter has been a focus of preoccupation for more
than 50 years both in the context of purely academic interest and for its
importance in semiconductor technology just as in relation to the problem
of high-temperature superconductivity (HTSC) [4, 5, 6, 7].

The idea that HTSC may be explained by Bose-condensation of electron
pairs arising in real space dates back to Ogg’s investigations [8]. Later on [9]
a bipolaron model was suggested where a bipolaron was treated as a hypo-
thetical particle in which two electrons bind together in one potential well as
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a result of an interaction of the two-electron system with long-wave optical
phonons (one-center, or Pekar bipolaron). Observation of HTSC in CuO2-
based layered ceramic materials [10] has given an impetus to investigations
on bipolarons. A model of small-radius bipolarons in narrow-band metals
was considered in [11] in the strong coupling limit in connection with super-
conductivity caused by their Bose-condensation. In studies of such states
the bipolaron coupling energy is usually assumed to be a phenomenological
parameter. Various aspects of the theory of large-radius bipolarons in view of
the problem of HTSC are dealt with in [12, 13, 14, 15]. In [16, 17] a system
of large-radius bipolarons in layered HTSC is treated as a Wigner crystal
which develops plasma oscillations favourable for pairing of charge carriers
in conducting layers.

A comprehensive discussion of the theory of large-radius bipolarons is
given in the reviews [12, 18].

Note that after the discovery of high-temperature superconductivity in
CuO2-based layered ceramic materials, the subject-matter in question has as-
sumed popularity in relation to low dimensional systems (see review [18] and
references therein). The works [2, 19] are devoted to the study of bipolarons
in three-dimensional (3D) and two-dimensional (2D) systems. The paper
[20] deals with a bipolaron in a crystal with anisotropic effective masses and
dielectric permittivities. In the limit case of the absence of anisotropy, the
system corresponds to a one-center Pekar bipolaron. In [2] a simple dimen-
sional relation is suggested which relates bipolaron energy in (3D) and (2D)
systems. In [20] this relation is checked numerically and confirmed by direct
variation of the wave function of a two-electron system. From this viewpoint
studies of bipolarons in (3D) and (2D) systems are practically equivalent. In
this work we consider continuum bipolarons in a three-dimensional isotropic
crystal.

The lowest values of the bipolaron energy were obtained in [1] by the
method of canonical transformations for Fröhlich coupling constant α ≥ 8
and in [2] by Feynman method of integration over trajectories for α < 8.
When we pass on form a polaron to two-electron systems and bound polarons,
indisputable advantages of integration over trajectories are offset since the
method fails to describe Coulomb interactions of electrons with a nucleus,
not does it suit to treat interelectron interactions. At the same time the
advantages concerned with the simplicity of consideration of the polaron
problem are also lost. Thus, Feynman method gives the lowest polaron energy
for virtually all values of the coupling constant as a result of minimization of
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a simple two-parameter functional [21]. A relevant functional for a bipolaron
has rather a cumbersome form which makes difficult numerical calculations
and hinders the application of the method to more complicated systems (such
as exchange-bound pairs in polar crystals, etc.).

In early papers devoted to calculation of the two-electron system energy in
continuum approximation, electron correlations were not taken into account
which considerably underestimated the coupling energy of the D−-center
(or bound bipolaron as in [22]) and even led researchers to conclude that a
bipolaron is energetically disadvantageous [9, 23]. Nevertheless, Buimistrov-
Pekar method suggested in [23] to calculate the energy of one-electron and
two-electron states in crystals with arbitrary strength of coupling between
the electron system and phonons is, in our opinion, one of the simplest and
most efficient methods for calculation of the energy spectrum of electron
systems in a solid body. Buimistrov-Pekar method correctly reproduces the
limits of weak and strong coupling and gives satisfactory results in the range
of intermediate coupling especially as applied to bound electron states when
the translation symmetry of the system is broken. In this connection many
researchers consider Buimistrov-Pekar method to be a most promising and
reliable tool for calculation of particular systems [24]. In [25] the method
was used to calculate a bipolaron. As a result of inappropriate choice of a
wave function (WF) (which was not sufficiently versatile) the values of the
bipolaron energy for all α were much higher than the results obtained in [1].

In this paper we use Buimistrov-Pekar method to calculate a bipolaron
energy with a more versatile WF consisting of a sum of Gaussians. We will
show that in the whole domain of a bipolaron existence, the value of a bipo-
laron energy obtained by Buimistrov-Pekar method is lower than that found
in the framework of direct variational approaches [1] and only slightly exceeds
(relative error < 0.3%) the one obtained by integration over trajectories for
α ≤ 7.

2 Main relations

Hamiltonian of a bound bipolaron has the form

H = h̄ω
∑

k

a+

k
ak +

e2

ε∞r12
+
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+
2∑

j=1

[
− 1

2m∗

∆j −
e2

ε0rj

+
∑

k

Vk(ak + a+

−k
) exp(ikrj)

]
, (1)

Vk = h̄ω

√
4παL0

V

1

k
(2)

α =
e2

2h̄ω

(
1

ε∞
− 1

ε0

)
1

L0

(3)

L0 =
√
h̄/2m∗ω (4)

where rj is the radius-vector of the j-th electron with the effective mass m∗

in the conductivity band, r12 is the distance between electrons. We assume
that the Coulomb charge is concentrated at the origin of the coordinates.
The influence of the crystal polarization on the Coulomb field of a static
charge is taken into account by introducing a static ε0 dielectric permittiv-
ity. The operator of electron-phonon interaction involves a high-frequency
dielectric permittivity ε∞, a+

k
(ak) is the operator of birth (annihilation) of

a longitudinal optical phonon with the wave vector k. We assume that the
phonon frequency is independent of k and equal to ω, α is a dimensionless
constant of Fröhlich coupling, V is the crystal volume.

Hereafter we will use the system of units in which h̄ = 1, ω = 1 and
2m∗ = 1. It follows that the unit of energy is h̄ω and the unit of length is
L0. In these units Hamiltonian (1) takes the form

H =
∑

k

a+

k
ak +

β

r12
+

+
2∑

j=1


−∆j −

γ

rj

+
∑

k

√
4πα

V

1

k
(ak + a+

−k
) exp(ikrj)


 , (5)

β =
e2

h̄ωε∞L0

=
2α

1 − η
, (6)

γ =
e2

h̄ωε0L0

=
2αη

1 − η
, η =

ε∞
ε0

. (7)
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3 Buimistrov-Pekar method as applied to

two-electron systems in polar crystals with

intermediate electron-phonon coupling

In modern presentation, Buimistrov-Pekar method implies that Hamiltonian
(5) is subjected to a canonical transformation exp (αS)H exp (−αS) with
unitary operator S =

∑
k (F ∗

k
(r1, r2)ak − Fk(r1, r2)a

+

k
), where Fk(r1, r2) is a

coordinate function of the electron system. Then the following expressions:
exp (S) ak exp (S) ⇒ ak + Fk, exp (S) a+

k
exp (S) ⇒ a+

k
+ F ∗

k
are valid.

Having averaged over phonon variables we will obtain

H =
β

r12
+

2∑

j=1

∑

k

∇jF
∗

k
∇jFk +

+
2∑

j=1

∑

k

[
−∆j −

γ

rj

+ Vk(Fk exp(ikrj) + F ∗

k
exp(ikrj))

]
+
∑

k

FkF
∗

k
(8)

which will serve as an initial expression for subsequent derivations.
Let us choose function Fk in the form

Fk = Ck + γkfk(r1, r2), (9)

where Ck, γk are variational parameters.
Having substituted (9) into (8) and varied the relation obtained over Ck

and γk we express the functional of the ground state of a two-electron system
as:

EBp = Js + Ji, (10)

Ji = −
∑

k

V 2

k

Ũ2
k

2k2 + Ukωk

, (11)

Ũk = 〈Ψ12 |fk(r1, r2)|Ψ12〉 〈Ψ12 |L∗

k
(r1, r2)|Ψ12〉 −

− 〈Ψ12 |fk(r1, r2)L
∗

k
(r1, r2)|Ψ12〉 , (12)

L∗

k
(r1, r2) = exp(−ikr1) + exp(−ikr2), (13)

Uk = 〈Ψ12 |fk(r1, r2)|Ψ12〉 〈Ψ12 |f ∗

k
(r1, r2)|Ψ12〉 −

− 〈Ψ12 |fk(r1, r2)f
∗

k
(r1, r2)|Ψ12〉 , (14)
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where Ji is an addition which has appeared for the case of intermediate
coupling and Js corresponds to the functional of a strong coupling bipolaron

Js = T̄12 + βV̄ee − γV̄e +
∑

k

V 2

k
|〈exp(−ikr1) + exp(−ikr2)〉|2 , (15)

T̄12 =
∫

Ψ12(∆1 + ∆2)Ψ12dτ , (16)

V̄ee =
∫ |Ψ12|2

r12
dτ , (17)

V̄e =
∫ |Ψ12|2

r1
dτ +

∫ |Ψ12|2
r2

dτ . (18)

4 Functional of the ground state of a

two-electron system

Having chosen fk(r1, r2) = L∗

k
(r1, r2) and, consequently, Ũk = Uk we will

have

Ji = −
∑

k

V 2

k

U2
k

2k2 + Ukωk

. (19)

And in a particular case of the absence of any electron correlations, when
the WFs of the electron system are written as a product of one-electron WFs
Ψ(r1, r2) = ψ(r1)ψ(r2), expression (19) yields

Ji = −
2∑

j=1

∑

k

V 2

k

(1 − F 2
k
(rj))

2

k2 + (1 − F 2
k
(rj))ωk

, (20)

where Fk(rj)) =
∫
ψ(rj) exp(ikrj)ψ

∗(rj)dτj.
The latter functional coincides with formula (20) from the paper [23] by

Buimistrov and Pekar. When we choose a WF in a nonmultiplicative form
which corresponds to consideration of electron correlations we should use a
more general functional where the addition corresponding to intermediate
coupling Ji is determined by expression (19).

In a recent work [26] devoted to a two-center intermediate coupling bipo-
laron, the electron WF has been chosen as a symmetrized product of polaron
functions centered at various points, i.e. it had a nonmultiplicative form
(Heitler-London method as applied to a bipolaron). However, the author
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varied functional with Ji, determined by (20) which is valid only for the par-
ticular case when the WFs of a two-electron system are chosen as a product
of one-electron ones. This fact has led the author [26] to varying of inappro-
priate functional and thus, resulted in erroneous numerical calculations.

5 Numerical calculations

Let us choose a two-electron WF as a linear combination of Gaussian orbitals

Ψ(r1, r2) =
1√
N12

n∑

i=1

Ci(1 + P12) exp(−a1ir
2

1 − 2a2i(r1 · r2) − a3ir
2

2), (21)

where P12 is the permutation operator interchanges the indices of the elec-
trons (1 and 2), Ci, a1i, a2i, a3i are variational parameters, r1 and r2 are
the coordinates of the first and the second electrons in a bipolaron, N12 is a
normalization multiplier.

The WF of a polaron is chosen in the form

Ψp(r) =
1√
N

n∑

i=1

ci exp(−air
2), (22)

where ci, ai are variational parameters, r is the electron coordinate in a
polaron, N is a normalization multiplier.

Fourier components and the normalization multiplier of the WF (22) are
given by the expressions

J1 =
∫

Ψ2(r1, r2) exp(ikr1)dτ12 =

=
1

N12

n∑

i,j=1

CiCj exp

(
−k

2

4

αij

αijγij − β2
ij

)
, (23)

J2 =
∫

Ψ2(r1, r2) exp(ikr2)dτ12 =

=
1

N12

n∑

i,j=1

CiCj exp

(
−k

2

4

γij

αijγij − β2
ij

)
, (24)

J12 =
∫

Ψ2(r1, r2) exp(ikr1 + ikr2)dτ12 =

=
1

N12

n∑

i,j=1

CiCj exp

(
−k

2

4

αij + 2βij + γij

αijγij − β2
ij

)
, (25)
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N12 =
∫

Ψ2(r1, r2)dτ12 =
n∑

i,j=1

CiCj exp

(
π

αijγij − β2
ij

)3/2

, (26)

where αij = a1i + a1j, βij = a2i + a2j, γij = a3i + a3j.
In the case when symmetrized WFs are varied, we can put J1 = J2.
The corresponding expressions for a polaron are

Jp =
∫

Ψ2(r) exp(ikr)dτ =
1

N

n∑

i,j=1

CiCj

(
π

aij

)3/2

exp

(
− k2

4aij

)
, (27)

N =
∫

Ψ2(r)dτ =
n∑

i,j=1

CiCj

(
π

aij

)3/2

, (28)

where aij = ai + aj.
With the use of (23) - (26) expression (19) takes the form

Ji = −
∑

k

V 2

k

(2(1 + J12) − (J1 + J2)
2)

2

2k2 + 2(1 + J12) − (J1 + J2)2
. (29)

Table 1 lists the values for the minimum of the functional of a free (γ = 0)
bipolaron calculated by us with the WFs (21) and obtained in paper [1] for
various α and η.

In comparing various variational approaches, comparison should be made
not between the coupling energies which are generally determined with re-
spect to the polaron energy calculated in the framework of the same ap-
proximation, but between the ground state energies. The best values of the
bipolaron energy for α ≥ 8 were obtained in [1]. The method of integration
over trajectories [2] as applied to a bipolaron gives higher (than in [1]) val-
ues for α ≥ 8 which results from overestimation of the Coulomb repulsion
between electrons. At the same time for α = 7, η = 0, the authors of [1]
obtained -16.067. The corresponding result in [2] is -16.27 (this value was
restored from the graphic data presented in [2]). So, for α ≤ 7 the method of
integration over trajectories gives the best results for the bipolaron ground
state energy. The best value obtained by us for α = 7, η = 0 was -16.23 which
only slightly exceeds the result found by Feynman method of integration over
trajectories.

A bipolaron is stable when the bipolaron ground state energy EBp is lower
than the polaron double energy 2Ep

EBp < 2Ep. (30)
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So, the bipolaron coupling energy is determined by the expression

∆E = 2Ep − EBp. (31)

The lowest value of the polaron energy was obtained in [27] by Feynman
method of integration over trajectories. The authors used an iteration pro-
cedure where Feynman expression for the polaron energy served as an initial
approximation. The estimates of the polaron energy obtained in [27] led to a
small correction to the Feynman value of the polaron energy (≤ 1%) and can
be considered as the upper boundary of the polaron energy in the range of
intermediate α values. Table 2 lists the values for the minimum of the func-
tional of a polaron, calculated by us with the WFs (22) and those obtained
in a number of any papers for various α.

Note, that in the limit α → ∞ the polaron energy tends to the exact
value obtained in [28] as a result of numerical solution of the relevant Euler’s
equation Ep = −0.108513α2h̄ω. This value of the polaron energy was found
by us with the help of the WF (22) for n = 5. To reproduce the energy
of a hydrogen atom with a precision of 6 significant figures, more terms in
expression (22) are required. Thus, for n = 10, the energy of a hydrogen
atom is EH = −0.9999986.

In order to assess the versatility of the functions used in our calculations
of the energy of two-electron systems, we employed them to calculate the
ground state energy of a negatively charged hydrogen ion H− (which is the
closest analog of a bipolaron in atomic physics). The energy was found to be
-1.055470 (n = 28 in (22)), the exact value being -1.055502 [29]. As is seen,
in describing atomic systems with the help of the WFs (21), (22) the desired
accuracy is achieved with a greater number of the terms.

Table 3 lists critical values of the parameters αc and ηc calculated by us
with respect to the upper boundary of the polaron energy obtained in [27].
The quantities αc and ηc determine the range of the bipolaron existence.
Thus, a bipolaron is stable when α ≥ αc and η ≤ ηc. The Table also presents
the relevant values obtained in [1]. So, in the whole range of α values the
energy of the bipolaron ground state is lower and the range of its existence
is wider than in [1]. Let us compare the parameter βc for α = 9. Our value,
which was found in the same way as in [1] with respect to the polaron energy
Ep = −11.538 made up βc = 19.27. In [1] βc was found to be 19.0 and in
[2] βc = 18.68 (the latter value was determined with respect to Feynman
polaron energy Ep = −11.486 [21]).
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To compare our values of βc with those obtained in [2] for some other
parameters of electron-phonon coupling, let us take advantage of the fact
that near the critical value of αc (η = 0), the quantity βc can be linearly
approximated by parameter α with good accuracy. In the case under con-
sideration with the use of Feynman polaron energy, this linear dependence
takes the form βc = 2.649α − 4.529 while in [2] βc = 2.305α − 2.107. So,
for α ≥ 7.05 Buimistrov-Pekar method as applied to a bipolaron gives better
results (lower values of the ground state energy and wider region of bipolaron
existence for parameter β) than those found by Feynman method [2].

At present, the bipolaron coupling energy is commonly determined with
respect to the polaron energy calculated in the same approximation. It is
believed that the region of a bipolaron existence determined parameters αc

and ηc defined in the framework of this procedure is closer to the true value of
these parameters [1, 2, 25, 30] than if it would be determined with respect to
the upper boundary of the polaron energy calculated not the same method.
Paper [1] presents qualitative reasoning in favour of this state of affairs.
Calculations were made with respect to the polaron energy by Buimistrov-
Pekar method with the use of expressions (21), (22) for n = 5. The critical
value of the coupling constant, calculated in this approximation is αc = 5.31.

Let us also compare our results with those obtained in [25]. In the strong
coupling limit α → ∞ the value of bipolaron energy calculated by us with
the WFs (21) (n = 5) tends to −0.273024α2h̄ω. In order to find the absolute
value of the bipolaron energy for the two-parameter WF used in [25]

ψ(r1, r2) = N(1 + γr2

12) exp(−µ2(r2

1 + r2

2)), (32)

where N is a normalizing multiplier, γ and µ are variational parameters,
we reproduced calculations with this function. In the whole range of α val-
ues, the bipolaron energy calculated with the use of the WF in question
runs higher than the energy found in [1] and in our work. In the strong
coupling limit we calculated the bipolaron energy with the use (32) to be
−0.2588406α2h̄ω. Despite the fact that the WF (32) suggested in [25] for
the calculation of the polaron energy gives overestimated energy values, it
is very suitable to get qualitative results since it does not require the use of
tedious methods of minimization of manyparameter functionals.
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6 Instability of a two-center bipolaron

The problem of the choice of a bipolaron spatial configuration was discussed
in detail in [31]. It was shown that in the strong coupling limit the only
energy minimum corresponds to the one-center configuration. The two-center
configuration is unstable and is associated with inappropriate choice of the
WF of the system. When a better WF is taken, the minimum will disappear.
Numerical calculations performed by us for the case of intermediate coupling
with the WFs chosen in the form

Ψ(r1, r2) =
1√
N12

n∑

i=1

Ci(1 + P12) exp(−a1ir
2

a1 − 2a2i(ra1 · rb2)− a3ir
2

b2), (33)

where ra1, rb2 are coordinates of the first and the second electrons determined
from the points a and b, respectively, the points a and b being separated by
the distance R, have shown that for all the parameters of electron-phonon
interaction at which a bipolaron is stable, the only energy minimum is one
corresponding to the one-center bipolaron configuration (R = 0).

Figure 1 shows relevant dependencies of the bipolaron energy on the dis-
tance between the centers of two polarization wells of two polarons for various
values of the Fröhlich constant α at η = 0. In order to show on one graph the
dependencies of the energy of a two-polaron system on the distance between
the centers of polarization wells for various α, Figure 1 shows the dependen-
cies EBp(R)/α2. The upper curve corresponds to the limα→∞(EBp(R)/α2)
and coincides with the appropriate dependence obtained in [31](Fig. 1) for
the functional Js(R), corresponding to the strong coupling limit. The energy
units in Fig. 1 as in [31] is effective Hartree determined byHa∗ = m∗e4/h̄2ε2

∞
,

because of h̄ω/Ha∗ = (1 − η)2/2α2.
Note, also, that the parameter R involved in the WF (33) (ra = r−R/2,

rb = r+R/2 for the origin chosen in the half of the distance between points
a and b) does not enter into the initial Hamiltonian and can be treated as a
distance between the centers of polarization wells only in view of the choice
of the WF (33) in the form similar to the WF of a hydrogen molecule in the
Heitler-London method [32]. It can easily be shown that a more general form
of a two-electron WF corresponds to the expression

Ψ(r1, r2) =
1√
N12

n∑

i=1

C̃i(1 + P12) ×

× exp(−a1ir
2

1 − 2a2i(r1 · r2) − a3ir
2

2 − 2a4iz1 − 2a5iz2), (34)
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where C̃i, a1i, a2i, a3i, a4i, a5i are variational parameters.
In a particular case when

C̃i = Ci exp(−0.25(a1i − 2a2i + a3i)R
2),

a4i = −0.5(a1i − a2i)R, a5i = −0.5(a3i − a2i)R, (35)

expressions (33) and (34) coincide.
The use of (34) as a probe WF has shown that for all the parameters

of electron-phonon interaction, the only energy minimum corresponds to
spherically-symmetric spatial distribution of a two-electron WF, i.e. the
variational parameters characterizing the “extent of nonsphericity” of the
WF (34) are a4i = 0 and a5i = 0.

In control calculations of the energy of a hydrogen molecule, the choice
of a WF in the form (34) has enabled us to reproduce with the good ac-
curacy the experimental value of this energy. Thus, for n = 28 in (34) we
calculated the hydrogen molecule energy to be -1.1733 a.u. for R = 1.401
which corresponds to the energy minimum. The result obtained by James
and Coolidge [33] is -1.172, the experimental value of the energy in question
is −1.174 ± 0.003a.u. [34, 35]. The latest calculations [36], based on 80-term
WFs in Born-Oppenheimer approximation has yielded the value -1.1744 a.u.
The new experimental dates and the references on the works deal with the
study of the energy spectrum of the hydrogen molecule are given in [37].

Note, that on account of considerable expenditure of computer time re-
quired for variation of manyparameter functional in the case of arbitrary
coupling with phonons and the choice of the WF in the form (33), we de-
rived the dependencies shown in Fig. 1 by substituting into functional (10)
the parameters corresponding to the minimum of the strong coupling func-
tional Js. This procedure is justified in the study of qualitative dependencies
shown in Fig. 1. More accurate expressions listed in the tables correspond
to variation of the total functional (10) with the use of the WF (21) and the
WF of more general form (34). Variation with the use of (34) has enabled
us to reproduce completely the results obtained for the WF (21).

The calculations of the lowest triplet bipolaron term were fulfilled with
the use of the antisymmetric with the respect to the permutation of the
electron coordinates WF

Ψt(r1, r2) =
1√
N12

n∑

i=1

Ci(1−P12) exp(−a1ir
2

a1 − 2a2i(ra1 · rb2)−a3ir
2

b2), (36)

12



Table 4 lists the values corresponding to a minimum of the functional (10)
for the triplet bipolaron term for various parameters α (for η = 0), obtained
with use WF (36) (n = 5) at R = 0. With the increasing of a distance R
between the centers of polarization wells the relevant energies monotonically
decrease going to a double polaron energy at R → ∞. For all R the relation
Et

Bp(R) > 2Ep (where Et
Bp(R) is a triplet term energy) is fulfilled. Thus,

at R = 0 the triplet term has the maximum, and the bipolaron stability
criterion is not fulfilled for any values of the distance between the centers of
the polarization wells.

7 Conclusions

Numerical calculations of the bipolaron energy performed by us in the frame-
work of Buimistrov-Pekar method have shown that the choice of Gaussian
system of functions as applied to the bipolaron problem in combination with
Buimistrov-Pekar method gives the best numerical results for the energy of
two-electron systems in crystals with polar coupling, as compared to other
methods using direct variation of the WF. The study of the WF of a more
general form corresponding to the two-center configuration of a bipolaron in
the case of an arbitrary electron-phonon interaction has demonstrated en-
ergy instability of the two center formation which was investigated earlier
in [26, 38]. Despite the fact that in the early papers devoted to the bipo-
laron continuum theory, the choice of the bipolaron WF was not appropriate,
the papers [38] undeniably stand out of subsequent works on the bipolaron
subject matter. The work [38] was the first to show the possibility of the
formation of a stable bipolaron state. At the same time, it seems that the
study of the oscillatory spectrum of a two-center bipolaron near a fictitious
energy minimum [39] serves an example of the study of a phenomenon whose
existence is impossible even in principle.

Parameter R involved in the WF (33) and treated as the distance between
the centers of polarization wells is analogous, in physical meaning, to the
variation parameter a in [2] which is determined as a mean distance on which
electrons fluctuate. The method of integration over trajectories as applied to
the bipolaron problem [2] has also suggested that a = 0, which is consistent
with our conclusion about energetic instability of a two-center bipolaron. At
the same time the dependencies JBp(R) shown in Fig. 1 which we obtained
for the first time as a result of numerical calculations with due regard for
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the effects of interelectron correlations have also an independent meaning
as a curves describing the dependence of the energy of two polarons on the
distance between the centers of polarization wells. Our dependencies have
qualitatively different character as compared to those presented in [40](Fig. 2)
being based on qualitative reasoning on the character of interaction between
polarons.

We suppose, that the deduction about the lack of the bound triplet bipo-
laron state, which we made as a result of the variation calculations with
the use of an extremely flexible WF (36), illustrates that for continual bipo-
laron the bound excited states are absent in complete analogy with the Hill‘s
theorem about the absence of any bound excited states for an ion H− [3].
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Table 1: The values of the bipolaron energy in units h̄ω calculated by
Buimistrov-Pekar method (EBp) and the method of optimized canonical
transformation (EA

Bp) [1] for various parameters of electron-phonon inter-
action.

The energy of the bipolaron ground state for various α values
5.5 6 7 9 20

η EBp EA
Bp EBp EA

Bp EBp EA
Bp EBp EA

Bp EBp EA
Bp

0 -11.161 -11.086 -12.703 -12.601 -16.234 -16.067 -24.927 -24.652 -111.928 -110.504

0.01 -11.075 -11.002 -12.595 -12.487 -16.053 -15.910 -24.650 -24.354 -110.497 -109.064

0.1 -14.598 -14.500 -22.068 -21.756 -96.878 -95.335
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Table 2: The values of the polaron energy calculated by the method of opti-
mized canonical transformation (EA

p ) [1], functional integration (EAGA
p ) [27],

Feynman‘s method (EF
p ) [21], Pekar‘s strong coupling method (EP

p ) [9], the
strong coupling method with using wave functions (22) for n = 5 (ESt

p ),
Buimistrov-Pekar method with using wave functions (22) for n = 5 (EBp

p ),
for various parameters of electron-phonon interaction in units h̄ω. The bold
font style indicates the lowest polaron energy in this range.
α 7 9 11 20 30 35 40 50

EA
p -7.2500 -10.653 -14.947 -44.997 -98.886 -133.91 -174.33 -271.34

EAGA
p -8.1374 -11.538 -15.827 -45.334 -98.524 -133.22 -173.37 -269.70

EF
p -8.1127 -11.486 -15.710 -45.283 -98.328 -132.81 -172.60 -266.01

EP
p -5.3171 -8.7896 -13.130 -43.405 -97.662 -132.93 -173.62 -271.28

ESt
p -6.9740 -10.475 -14.830 -45.127 -99.389 -134.66 -175.35 -273.01

EBp
p -7.1302 -10.564 -14.900 -45.144 -99.400 -134.66 -175.350 -273.02
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Table 3: Estimated critical values of the electron-phonon coupling constant
and the ratio of optical to static dielectric constants calculated by Buimistrov-
Pekar method (ηc) with using the lowest upper bound of polaron energy
(EAGA

p for α ≤ 20 and EBp
p for α ≥ 30) and the method of optimized canonical

transformation with using polaron energy EAGA
p [1]. In the strong coupling

limit (α → ∞) the Buimistrov-Pekar method gives ηc = 0.1432.
α 7.1 7.3 7.5 8 9 11 20 30 40 50

ηc 0.002 0.011 0.020 0.039 0.065 0.095 0.1375 0.1420 0.1429 0.1430

ηA
c 0 0 0.010 0.029 0.056 0.086 0.130 0.138 0.1385 0.140
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Table 4: The values of the triplet term of the bipolaron energy E t
Bp in units

h̄ω calculated by Buimistrov-Pekar method with using wave functions (36)
for n = 5 at R = 0 for various parameters of electron-phonon interaction for
η = 0. At α → ∞ Et

Bp/2α
2 = −0.076021.

α 7 9 11 20 30 35 40 50

Et
Bp -13.993 -18.458 -24.402 -66.656 -142.648 -192.057 -249.069 -385.903
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Figure captions

Fig. 1. The dependencies of the bipolaron energy from the distance
R between the centers of polarization wells of two polarons for dif-
ferent parameters of electron-phonon coupling constant α calculated
by Buimistrov-Pekar method for η = 0 in effective atomic units
(m∗e4/h̄2ε2

∞
for the energy and h̄2ε∞/m

∗e2 for the distance).
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Figure 1:
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