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It is shown that ferron states in antiferromagnetic semiconductors are stabilized by the 
electron-induced polarization of the ionic crystal lattice. An electron captured by a 
ferromagnetic microregion polarizes the lattice much more strongly than a free electron and 
the process reduces the electron energy. A calculation is reported of the maximum Neel 
temperature at which a ferron is still stable at T = 0. It is found that in the case of europium 
chalcogenides this temperature is twice as high as in the absence of such polarization. The 
ferron dissociation temperature also increases by a factor of 2. 
PACS numbers: 75.50.Ee, 71.85.Ce 

 
Nagaev 1,2 proposed a special conduction-electron state in a semiconductor crystal: An electron 

creates a micro-region of a new phase, which is normally unstable, and stabilizes this phase by becoming 
localized inside it. The condition for the existence of such a quasiparticle is a lower position of the bottom 
of the conduction band in the unstable phase than in the stable phase. The formation of such 
quasiparticles can be expected particularly in anti-ferromagnetic semiconductors in which a conduction 
electron is self-localized in a ferromagnetic microregion (ferron states). This prediction has been 
confirmed experimentally for antiferromagnetic semiconductors EuSe and EuTe (ref. 3). The results 
indicated that ferrons are more stable than expected on the basis of the initial estimate 1, 2. 

We shall show that the ferron stability increases considerably as a result of polarization of the ionic 
lattice of a crystal by these quasiparticles. The constant α representing the coupling of electrons to optical 
phonons in ionic crystals is small (~ 2-3), i.e., the interaction can be described by the perturbation theory 
(as shown in ref. 4, where this theory applies up to α < 6). Thus, a free electron polarizes weakly the 
lattice and the polaron shift of its energy αω (ω is the optical phonon frequency) is small (~ 0.01 eV). 
However, an electron captured by a ferromagnetic microregion polarizes the lattice much more strongly: 
The polaron shift is of the order of e2/e*R, where R is the radius of the ferromagnetic microregion, e is 
the electron charge, 1/ε * = l/ε∞ - 1/ε0, ε0 and ε∞ are the static and high-frequency permittivities of the 
crystal. Under typical conditions this quantity is 0.2-0.3 eV, i.e., it is close to the difference between the 
minimum energies of an electron in the ferromagnetic and antiferromagnetic states. Thus, a state of this 
kind represents essentially a mixed ferron-polaron state. 

We shall consider a ferron in a polarizable crystal with a conduction band whose width W is large 
compared with the s-f exchange energy As/2. We shall use a method similar to that employed by Pekar in 
the case of a tight-binding polaron.5 The functional of the total energy of the 
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where ψ is the wave function of an electron; Ed is the formation energy of a ferromagnetic microregion; p 
is the polarization; D is the induction vector; m is the effective mass of a band electron. The energy of the 
polarization of the lattice by an electron Ep is 
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The minimum of the functional F gives the total energy of the system. We shall solve the problem by 
applying the variational principle, in which it is assumed that a ferromagnetic order is established inside a 
sphere of radius R. The radius R is the variational parameter. A test electron wave function ψ describes 
the ground state of the electron in a spherically symmetric well of radius R and of constant depth As/2. 



Thus, the electron wave function is selected in the form 
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where Ee is the electron energy in the well: c1 and c2 are the constants found from the matching condition 
at the boundary (at r = R) and from the normalization of wave functions. It follows from Eqs. (2) and (3) 
that in the case of a deep level in a well, ℵR >>1, the energy of the polarization of the lattice by an 
electron has the absolute value 
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Since |Ep| increases with decreasing R, inclusion of Ep in Eq. (1) reduces the radius R at which the total 
energy of the system has its minimum value, i.e., the lattice polarization tends to reduce the ferron 
moment. 

The conditions of stability of such a localized state can be found by discussing a situation in which 
the electron level is close to the top of the well. Then, the radius of the electron state  ℵ -1 is large 
compared with the radius of the ferromagnetic region R. If we retain only the terms which are linear in  
ℵR, we find that Eqs. (2) and (3) give the following expression for the polarization energy: 
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Thus, on the basis of Eq. (5), the functional F which includes the relationship between ℵ  and k given by 
Eq. (3) has the following form in the limit  ℵR << 1: 
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where J - ZIs; I is the Integral of the exchange between neighbors; Z is the coordination number; s is the 
spin of a magnetic atom; a is the lattice constant. 

The parameter k is defined by the equation 
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The maximum value of J can be found by equating to zero both the energy E of Eq. (6) and its derivative 
with respect to the well radius: 
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We shall now report a numerical calculation for europium chalcogenides with the following parameters: 
eO ≈ 9.4, e∞ = 5, As = 0.6 eV, W = 5 eV, a = 3 • 10-8 cm, ω = 0.01 eV, α = 4. The effective mass of an 
electron is assumed to be approximately equal to the free-electron mass 6. In this case we can assume that 
|Ep| >>αω, i.e., we can ignore the energy of the polarization of the lattice by a free electron. The 
maximum Neel temperature TNC of a crystal in which a ferron should still be stable at T <<TN; is 



TNC≈21°K. In the absence of the electron-phonon interaction, the maximum Neel temperature is 
Tmax

N≈9°K, i.e., this interaction doubles the ferron stability. 
We can easily also find the highest temperature at which a ferron state is stable if its Neel point TN 

is less than the maximum value TNC representing the upper limit of the ferron stability. If T > TN, the free 
energy of the system under discussion differs from Eq. (6) because the quantity | J |s in the last term is 
replaced with the gain in the free energy D(T) resulting from the creation of a ferromagnetic microregion 
in an antiferromagnetic semiconductor at a nonzero temperature (this energy is calculated per atom). 

We can find F using the well-known thermodynamic relationship between the free energy and the 
average energy E(T), as given in ref. 7: 
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Integrating this expression between T and ∞ and bearing in mind that F→- T ln (2s - 1) in the limit T→∞, 
we find that 
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If the magnetic interaction is described by the Heisen berg Hamiltonian, we find that in the nearest-
neighbor approximation the energy per atom is 
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where 0s s∆  is the correlation function of the nearest-neighbor spins. It follows from Eqs. (9) and (10) 

that if we know the temperature dependence of 0s s∆ , we can then find the free energy of an 
antiferromagnet. This energy can be estimated by the method of high-temperature expansions: 
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The quantity | J |s in Eq. (6) should be replaced with the difference between the energy of ferromagnetic 
ordering and the free energy of antiferromagnetic ordering at T ≥ TN in accordance with Eqs. (9) - (ll): 
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Hence, it follows that the ferron state should be destroyed at a temperature TF ~ 20°K, i.e., the 
stabilization of a ferron by the lattice polarization is double (for the parameters given above) that in the 
unpolarized lattice case. 

These estimates are in agreement with the experimental results reported in ref. 3, which demonstrate 
that a ferron may exist in a paramagnetic phase at temperatures considerably lower than TN. 
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