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A study is made of the self-localization of conduction electrons within ferromagnetic 
regions created by the conduction electrons in metamagnetic materials (such as 
EuSe) with a strong volume dependence of the exchange integral. In contrast to the 
standard ferron states, the creation of a ferromagnetic region is accompanied by the 
change of sign of the exchange integral between magnetic atoms in the electron self-
localization region. The energy loss due to the creation of such a region is governed 
essentially by lattice strain. It is shown that an external magnetic field increases the 
magnetic moment of a ferron and, for h = hsf (hsf is the spin-flop field), the ferron 
moment is approximately twice as large as the moment in the absence of a field. The 
ferron magnetic moment increases also in the absence of a magnetic field in a sample 
subjected to an applied stress creating a strain in a crystal. 
PACS numbers: 71.45.Gm 

 
It was shown in Refs. 1 and 2 that, for certain semiconductor crystals, a reduction in the 

total energy is achieved when a conduction electron creates a microscopic region which would 
not be stable under normal circumstances but can be stabilized by the localization of the 
conduction electron. Most favorable conditions for the appearance of such states are created in 
antiferromagnetic semiconductors. The region of localization of the conduction electron 
represents a nucleation ferromagnetic center in the antiferromagnetic matrix.  The total energy of 
such a state is lower because the ferromagnetic ordering leads to a minimum in the conduction 
electron energy. The self-localized states of carriers in antiferromagnetic semiconductors were 
called ferrons and were observed in EuSe and EuTe crystals.3  The estimates of the reduction in 
the electron energy due to the self-localization that were made in Refs. 1 and 2 indicate that the 
energy lowering is of the order of 0.1-0.2 eV. 

The estimates of the ferron energy made in Refs. 1 and 2 were based on the assumption 
that the crystalline lattice was completely rigid.  However, the electron self-localization should 
lead to displacements of the atoms in the lattice that should influence considerably the ferron 
energy.  It was shown in Ref. 4 that the polarization of the Ionic cores due to ferrons increases 
considerably the stability of ferron states. An increase in the ferron stability can be also expected 
in crystals subjected to elastic compression or shearing not accompanied by the creation of 
dipole moments.  This problem will be studied in the present paper. 

A lattice strain changes both the energy of the electron localization (the condenson effect5) 
and the exchange energy between magnetic atoms (the magnetostriction effect). The former 
effect is usually small. It is of the order of C∆V/V, where C is the deformation potential constant 
and ∆V/V is the relative volume change. For typical values C ~ 10 eV and ∆V/V < l0-3, the 
aforementioned effect is of the order of few hundredths of an electron-volt. However, the 
magnetostrictive deformation of the lattice due to the formation of ferrons plays an important 
role in magnetic materials in which the Heisenberg exchange integral depends strongly on the 
volume. The situation when the lattice constant is close to the value ac for which the exchange 
integral J (ac) vanishes is of special interest. 

Such a situation is realized, for example, for EuSe in which the ferron state was observed.3 
The Neel point of EuSe is low (TN ≈ 4.6°K) and a comparatively small pressure of 1 kbar leads to 
a shift of TN by 1 deg (see Ref. 6). Moreover, the transition to a disordered state is of first order 
in EuSe, which is typical of materials with a strong volume dependence of the exchange 
integral.7 Finally, a strong volume dependence of the exchange integral can explain the observed 



metamagnetism of EuSe, which manifests itself by a discontinuous transition from the 
antiferromagnetic to ferromagnetic state in weak magnetic fields ~102-103 Oe (the standard 
explanation of the metamagnetism, which is due to a strong magnetic anisotropy, does not apply 
to EuSe since this material is isotropic and the anisotropy field quoted in Ref. 8 is only about 100 
Oe). Since the magnetostriction in EuSe is strong, the external magnetic field in which the anti-
ferromagnet-ferromagnet transition occurs under pressure is lowered.6

The magnetostriction of EuSe should influence the formation of ferron states much more 
strongly than the lattice polarization.  The lattice polarization energy is inversely proportional4 to 
the radius of a ferromagnetic microdomain and, since the energy loss due to the formation of 
ferromagnetic regions in a metamagnet is small, the radius in question is large for EuSe (~10 a). 
Therefore, we shall neglect the effects related to the polarization. We shall consider only the case 
when the exchange between the carriers and localized magnetic moments AS/2 Is small 
compared with the width of the carrier energy band W (which is satisfied for europium 
chalcogenides9). 

The formation of a ferromagnetic microdomain by an electron in an antiferromagnet 
should lead to a distortion of the microregion and of the whole antiferromagnetic matrix. The 
created strain influences the exchange integral and, when the exchange integral depends strongly 
on the lattice parameter, even the sign of the exchange integral can change. The dependence of 
the exchange integral on the lattice constant a can be written as an expansion in powers of (a-a0), 
where a0 is the value of the lattice constant in the absence of exchange 

 

( )0 0 0 1 ,ll
JJ J a a J J u
a

∂
= + − = +

∂
where 1

1
3

JJ
a

∂
=

∂
                                  (1) 

 
In the nearest-neighbor approximation, we obtain J=ZS2I/2a3, where S is the spin of a magnetic 
atom; Z is the number of neighbors; I is the exchange integral; ull is the sum of the diagonal 
components of the strain tensor. The problem of self-localization of electron states can be solved 
by the variational method. We shall assume that a ferromagnetic state is stable within a sphere of 
radius R and the ordering outside this sphere is anti-ferromagnetic. The radius of the 
aforementioned region R is treated as a trial parameter. We shall also assume that the sample is 
subjected to a pressure P. 

The total energy functional written in the first approximation in AS/W has the following 
form: 
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where ψ is the electron wave function; uik Is the strain tensor; K and µ are the bulk and shear 
moduli. The first two terms in Eq. (2) represent the energy of an electron interacting with 
magnetic atoms via the s-f exchange, the third term corresponds to the exchange energy of 
magnetic atoms, and the fourth term to the deformation energy; since the pressure acts on the 
crystal surface, it can be taken into account in the equilibrium equation as a boundary 
condition.10 The functions Θ1(r) and Θ2(r) are determined by the spin ordering of the lattice and 
are given by: 
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The lattice deformation necessarily results in a lowering of the energy of the ferron state. 
This is due to the fact that the deformations are governed by equilibrium equations 
corresponding to the minimization of the functional (2) with respect to the displacements u(r). 
Using Eq. (2), we shall evaluate the stress tensor σik from the general expression 
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Then,  we  can  apply Eq. (3)  to  transform  the  equilibrium  equation  for  the  stress  tensor 
∂ σik /∂ xk=0 to the following form: 

 
1 0

1 2
u grad div

σ
∆ +

−
u =                                                 (4) 

 
where u is the strain vector; ∆ is the Laplace operator; σ is the Polsson ratio; µ = E/2(1+σ), 
K=E/3(1 - 2σ), E is the Young modulus. Since the strain must be finite at r = 0, we can seek the 
solution of Eq. (4) in the following form: 
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where C1, C2, and C3 are unknown constants which can be evaluated from the continuity of 
displacements and stresses 
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It follows from Eq. (5) that the equalities 
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are satisfied. Using Eqs. (6) and (6`), we obtain the following expressions for the unknown 
coefficients: 
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Substituting Eqs. (6') and (7) in Eq. (2), we find the total energy functional: 
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where EA  is the energy of the antiferromagnet in the absence of an electron.  To proceed further, 
the actual form of the electron trial wave function will have to be specified. For R>>a, the trial 
wave function reduces to the wave function of a particle in an infinitely deep spherical potential 
well of radius R (with an accuracy up to terms ~a/R)1
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where Ee is the electron energy. Substituting Eq. (9) in Eq. (8), we obtain 
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The equilibrium value of the radius R can be obtained from the requirement that e should have a 
minimum: ∂ε / ∂R = 0. It follows from Eq. (10) that the equilibrium radius is given by the 
following expression that holds not only for metamagnetic materials but also for Heisenberg 
antiferromagnets with a strong volume dependence of me exchange Integral: 
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For metamagnetic materials, it is necessary to assume that the lattice constant in the absence of 
pressure (P = 0) is close to the value ac for which the exchange integral changes its sign,7 i.e., 
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Since ull = 3[(a - a0)/a], the energy of a crystal in the absence of conduction electrons is given 
by7 (per magnetic atom) 
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in accordance with Eq. (2). we have 
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where h is the external magnetic field (in energy units) and ϕ is the angle between the magnetic 
field and the magnetic moment.  The minimization of Eq. (13) with respect to the lattice constant 
a and the angle ϕ indicates7 that, for h = 0, the energy change corresponding to the ferromagnet-
antiferromagnet transition is given by 
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The lattice constants corresponding to the ferromagnetic and antiferromagnetic orderings are 
given by 
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In an external magnetic field h < hsf (hsf is the spinflop field), the orientations of the moments of 
both sublattices of an antiferromagnet are practically unchanged. Therefore, Eq. (14) assumes the 
form 
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Replacing in Eq. (11) J0  by J0(1 - h/hsf), we obtain the following expression for the ferron radius 
[see Eq. (15)]: 
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It follows from Eq. (17) that the ferron moment increases with increasing h but the ferron radius 
remains finite at h = hsf.  Assuming that m* is the free electron mass and the elastic constants K 
and m are of the order of 1010-1011 N/m2, we find that, for | (aF - aAF)/ aAF | ≈ 10-3 (for our 
estimate, we use the magnetostriction in EuO in the ferromagnetic state induced by a magnetic 
field11 above Tc) and h = hsf, the radius of the ferromagnetic region is given by R ≈ 9a, where a ≈ 
3A. The quantity J0 can be estimated using Eq. (16) and the critical field for the dissociation of 
ferron states hsf ≈ 103 Oe (see Ref. 9). Therefore, the ratio of the ferron moments for h = hsf and h 
= 0 is given by [Eq. (17)] 
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This fact should be taken into account in the experimental observation of ferrons from the 
change of the magnetic susceptibility of a sample due to illumination. 

The antiferromagnetic-ferromagnetic phase transition under pressure was studied in EuSe 
and EuTe in Refs. 6 and 12. It follows from Refs. 6 and 12 that the antiferromagnetic ordering 
corresponds to a larger lattice constant than the ferromagnetic ordering: aAF > aF. 

Therefore, the antiferromagnet-ferromagnet phase transition takes place under pressure.6,12  
Therefore, it is necessary to assume in Eq. (12) that a0 is greater than ac and L < 0.  Equation (17) 



also describes the pressure dependence Pc = 3K(1 -ac/a0) of the ferron moment up to Its critical 
value for which a0(P) reaches the value ac. .The ferron moment increases as a function of the 
pressure and, in the absence of a field h, its value for P = Pc is approximately twice as large as 
the value corresponding to P = 0 (the estimates apply to the same numerical values of the 
parameters). 

To avoid misunderstanding, we would like to stress that the ferron radius remains finite at 
the phase transition point regarded as a function of P. Moreover, the ferron moment remains 
finite even in the region in which the antiferromagnetic state is metastable and increases as a 
function of the distance from Pc and tends to infinity underpressure P2=3K(1-ac/a0+|J1| 
4µ/(4µ+3K). The ferron moment remains finite for P2 > P > Pc because of strains Induced in the 
metastable phase created by a heterogeneous nucleation center.  The situation here is similar to 
the nucleation centers that appear in a first-order phase transition. 

Finally, we would like to point out that the model of a metamagnetic material proposed in 
Ref. 7 simplifies somewhat the actual situation in EuSe. In fact, the anti-ferromagnet-
ferromagnet phase transition in EuSe in a magnetic field is preceded by a antiferromagnet-
ferromagnet phase transition with hsf ~ 100 Oe. However, ferrons can occur even in the 
ferrimagnetic phase since its moment is small.13 In fact, our theory can essentially be applied 
also to metamagnetic transitions of the type ferrimagnet-ferromagnet. 
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