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A theory is developed of a change in the magnetization of ferromagnetic 
semiconductors as a result of illumination. In contrast to the usual situation when the 
frequency of light lies within an absorption band, an analysis is made of the 
frequency range in which a crystal is transparent. In this case the photoferromagnetic 
effect is due to virtual transitions of electrons from the valence to the conduction 
band. Such transitions result in the mixing of the conduction- and valence-band 
states. This mixing enhances the exchange of electrons between the valence bands 
and localized d or f magnetic moments, and thus facilitates the establishment of the 
ferromagnetic order. The situation is treated as a nonlinear kinetic problem. An 
expression is obtained for the shift of the magnon frequency in the spin-wave range. 
Extrapolation of the calculated results to higher temperatures makes it possible to 
estimate the shift of the Curie temperature. 
PACS numbers: 75.10.Lp, 75.30.Et, 78.20.Ls 

 
1. Magnetic properties of semiconductor compounds of transition and rare-earth elements 

depend strongly on the carrier density because carriers provide the means for the indirect 
exchange between localized d or f magnetic moments. It was suggested some time ago[1] that the 
photoexcitation of carriers should increase the Curie temperature of ferromagnetic 
semiconductors. However, the theoretical estimates of this effect[1] have been found to be several 
orders of magnitude too high and this is why the phenomenon of photoferromagnetism has not 
been discovered experimentally until many years later.[2] Only very recently some very precise 
experiments have established the influence of light on the magnetization of the ferromagnetic 
semiconductor EuS.[3] However, a parallel investigation of the photoconductivity has not been 
made because of considerable technical difficulties[3] and, therefore, it is not yet clear whether 
the reported effect[3] is associated with photoelectrons. The estimates[3] obtained from the shift of 
the Curie point under the action of a laser beam indicate a carrier density of ~1018 cm-3. The 
possibility of optical generation of such a high carrier density is doubtful if we carried out on 
highly defective crystals (films) in the vicinity of the Curie point and that a sharp photoconduc-
tivity minimum is observed in this temperature range.[2]

We shall demonstrate the possibility of the photoferromagnetic effect which is not 
associated with the optical generation of carriers, so that an increase in the degree of 
ferromagnetic order under the influence of light may occur even in the range of frequencies cor-
responding to the optical transparency of a crystal. This effect is due to virtual transitions of 
electrons from the valence to the conduction band producing virtual conduction electrons and 
holes (we shall use these terms for the changes in the valence-band states under the influence of 
illumination and we shall understand them to mean that the valence band acquires an admixture 
of the conduction-band states; it should be understood that electrons present in the valence band 
before illumination remain in that band although the band itself changes). 

In many magnetic semiconductors (for example, EuO[2]) the valence-band states originate 
mainly from the p orbitals of the nonmagnetic anions and the conduction-band states from the 
outer orbitals of the magnetic cations. The overlap of the orbitals of the partly filled cation shells 
with the orbitals of the outer shells of the same cations is much stronger than with the anion 
orbitals. Therefore, the exchange interaction of the localized d and f moments with the 
conduction electrons is much stronger than with the valence-band electrons. Under these 
conditions the mixing of the conduction- and valence-band states under the influence of 



illumination enhances greatly the exchange of electrons between the valence band and the 
localized moments. 

Depending on the orientation of the electron spin relative to the moment of a crystal, this 
exchange enhancement may either decrease or increase the electron energy. If the degree of 
mixing is independent of the electron spin, there is no net change in the energy of the exchange 
of electrons between the completely filled valence band and the localized moments. However, in 
ferromagnetic semiconductors the degree of mixing depends on the electron spin direction.  This 
is due to the fact that in the case of a finite moment of a crystal the energy bands are spin-split 
(this is the Zeeman splitting of the electron energy in the molecular field of the crystal).  
Consequently, the spin orientation affects also the gap between the valence and conduction 
bands, which governs the degree of mixing. In terms of the virtual conduction electrons we may 
say that they are spin-polarized and that the dominant virtual transitions are those with the spin 
projection that ensures an increase in the energy of their exchange with the localized moments.  
This energy increases with the magnetization of the crystal. Therefore, the virtual electrons 
created by illumination tend to establish and maintain the ferromagnetic order in a crystal. 

The mechanism described above operates also in those cases when carrier generation is 
possible under the influence of light. If the magnetization relaxation time is shorter than other 
characteristic times, the contributions of the virtual and real photoelectrons to the 
photoferromagnetic effect may be separated in accordance with the relaxation times (the former 
contribution is instantaneous and the second has the same relaxation time as the 
photoconductivity). 

The fact that the virtual electron transitions are not accompanied by the absorption of light 
makes it much easier to observe experimentally the photoferromagnetic effect in the 
transparency range of a crystal:  illumination does not cause heating which might destroy the 
ferromagnetic order. 

We shall consider the photoferromagnetic effect due to virtual electron transitions in the 
spin-wave range. Extrapolation of the results to higher temperatures makes it possible to estimate 
the shift of the Curie temperature under the influence of illumination. Since pho-
toferromagnetism is a nonequilibrium effect, we cannot use the standard methods of statistical 
physics and we have to treat the situation as a nonlinear kinetic problem. We shall show that 
when certain conditions of a dynamic electron equilibrium are satisfied and a sufficiently long 
time passes from the beginning of illumination, a magnon distribution is established and this 
distribution is described by the usual Bose function with a renormalized magnon frequency 
which depends on the intensity of light. The method of equations of motion for the occupation 
numbers with explicit allowance for the interaction of the system in question with the thermostat, 
which we shall use here, may be of interest also in other applications. 

2. In a mathematical description of the photoferromagnetic effect we must bear in mind 
that if we ignore the relativistic effects, the electron transitions are then due to the electric vector 
of an electromagnetic wave, i.e., the Hamiltonian of the interaction of electrons with light 
conserves the spin of the electron system. Therefore, without the interaction of a crystal with the 
thermostat there is no change in its magnetization under the action of light.  It might seem that a 
change in the effective exchange interaction in the electron subsystem under the influence of 
illumination may, without the thermostat, alter its magnetization. In fact, this is not true:  such a 
modification to the exchange does not alter the symmetry properties of the Hamiltonian of the 
system which are responsible (if the relativistic effects are ignored) for the conservation of its 
total spin. If we consider the difference between the Hamiltonian of the exchange renormalized 
under the action of light and the initial Hamiltonian as a perturbation we find that the 
perturbation Hamiltonian still conserves the total spin and, therefore, the only nonzero matrix 
elements of this Hamiltonian are those which link the states with the same value of the total spin. 
In other words, the magnetization of a crystal is not affected by illumination if we ignore its 
interaction with a thermostat. 

The interaction which does not conserve the total spin is, for example, the spin-lattice 



coupling. Since the lattice is in a state of thermodynamic equilibrium, it acts as the thermostat. 
We shall use only the most general property of this thermostat:  its state does not change because 
of the interaction with the system under consideration. The properties of the thermostat are 
possessed also by a system of large dimensions with a very short relaxation time of its modes. 
For times much longer than that necessary to establish a thermal equilibrium the detailed 
structure of the interaction between the crystal and thermostat is unimportant. Therefore, without 
any loss of generality, we shall use the simplest model of the thermostat. 

The Hamiltonian of our system considered on the basis of the s-f model of a magnetic 
semiconductor can be represented in the form 
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Here, kc σ

+ , kc σ , and ka σ
+ , akσ are, respectively, the creation and annihilation operators of electrons 

in the valence and conduction bands; b+
s and bqare the magnon operators; Bµ

+ and Bµ are the 
thermostat operators, it is assumed that the interaction of the valence-band electrons with the 
localized f moments can be ignored. The interaction of the conduction-band electrons with the f 
spins is characterized by the s-f exchange constant A and, to be specific, we shall assume that 
this constant is positive. The s-f exchange shifts the energy εkσ of an electron with the spin 
projection σ compared with the "bare" electron energy εk by an amount ASσ, where S is the value 
of the f spin. The interaction of electrons with light is characterized by the matrix element (ck |p| 
vk) between the valance and conduction band states with the same quasimomentum k; l is the 
polarization vector of the incident light; E0 is the amplitude of the electric field.1)

The physical meaning of the thermostat operators B+
µand Bµ and the corresponding 

dynamic variables m is not specified. From the calculations given below it is sufficient to note 
simply that the Hamiltonian HQ of the interaction between magnons and the thermostat con-
serves neither the magnetic quasimomentum nor the magnon number. Since the Hamiltonian HQ 
does not conserve the number of the thermostat quanta either, the operators B+

µ and Bµ should be 
regarded as of the Bose type. The absorption of magnons is possible if the frequencies Ωµ are of 
the same order of magnitude as the magnon frequencies, ωq i.e., if they are low compared with 
the electron frequencies. 

Since a change in the magnetization under the influence of light is proportional to its 
intensity, i.e., to E2

0, the determination of the magnetization is a nonlinear kinetic  
problem. 

The magnetization is found from the equation of motion for the average magnon numbers 
(b+

q bq) and the higher correlation functions associated with them. The angular brackets mean 
here the averaging with a nonequilibrium density matrix p(t): 〈AB〉 ≡ 〈p(t)AB〉. The equations of 
motion for the magnon occupation numbers, obtained by means of the Hamiltonian (1), have the 
following form for t ≥ 0: 
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We shall show later that after a sufficiently long time the quantity mq ≡〈b+

q bq〉 is governed by 
the first term on the right-hand side of Eq. (2). The equations of motion, accurate to within terms 
~Q inclusive, can also be derived for the mixed magnon-thermostat correlation functions in this 
equation.  It is assumed that because of the translational invariance of a crystal in the spin-wave 
range, only the diagonal correlation functions (b+

q bq) do not vanish. The same is true, by 
definition of the thermostat, of the correlation functions 〈B+

µ  Bµ〉: 
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Bearing these points in mind, we obtain the following equations of motion for 〈b+m Bm〉: 
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analogous equations apply also to 〈B+

m bq〉. The calculations given below are based on the use of 
the small parameters 1/2S and Vk/W, where W~10/m*a2 is the width of the conduction band.  In 
the first order in 1/2S, we can write 
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The result for (ak+q↓ 

+ ak↑Bµ) can be obtained in the same order in 1/2S by deriving the equations 
of motion 
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The higher magnon correlation functions, which Include the operators b+b, can be omitted in the 
spin-wave range.  The terms ~V are also omitted because they give a correction to the correlation 
function which is (a+

k+q↓ ak↑ Bµ)~V2
k, which can easily be demonstrated by writing down the 

equation of motion for correlation functions of the (B+a+c) type. The term ~Q may be ignored 
because such correlation functions are already Included in Eq. (2) but without the small 
parameter Q. If the other terms in Eq. (5) are subjected to decoupling of the type (4), we obtain 
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Thus, if the average number of the conduction electrons nkσ(t) are known, the system (3)-(6) is 
closed. It is sufficient to find the numbers nkσ(t) in the principal approximation in respect of 1/S.  
Ignoring the Influence of magnons on electrons and bearing in mind that for t ≤ 0 all the 
electrons are in the valence band and there are none of them in the conduction band, we obtain-in 
agreement with the well-known results on the state of a two-level system in the presence of a 
periodic perturbation[4]
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We shall later find it Important that, because of the difference between the phases of the 
oscillations corresponding to different values of k, the contribution of the oscillatory parts of 
nkσ(t) to 〈b+

q Bµ〉is negligible for t >>tA=max[∆2
kσ + 4 |Vk|2]-1/2. In fact, after substitution of Eqs. 

(4), (6), and (7) into Eq. (3) and summation over k by the steepest-descent (saddle-point) 
method, we find that it is proportional to 1√t [in the expression for the correlation function (6) it 
is convenient, before summation over k, to transform the differential operator by means of the 
Identity 
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and then carry out the summation]. 

The time tA is of the order of the atomic value, whereas we are interested in the behavior of 
the system at times much longer than not only the atomic times but also longer than the time 
needed to establish a thermal equilibrium. Therefore, we may assume that a steady-state electron 
distribution is established suddenly at t = 0. This allows us to carry out the Laplace trans-
formation of the correlation functions with respect to time. As a result, Eq. (3) and the conjugate 
equation assume the form (allowing for the smallness of Ωµ compared with W) 
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Here, 
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In the equation system (8) allowance is made for the vanishing of the correlation functions of the 
〈B+

µ ak↑
+ak+q↓〉 type at the initial moment (at  t = 0 there are no electrons in the conduction band). 

After application of the Laplace transformation of Eq. (2) and substitution there of the Laplace 



transforms of the correlation functions from the system (8), we obtain the following equation for 
the determination of the Laplace transform mq(p) of the magnon distribution function 
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Here, G(p) represents the terms which have no singularities at p = 0. They appear because of the 
terms ~(B+

µ bq)t=0 and the two last sums on the right-hand side of Eq. (2), which also give rise to 
terms with singularities of the l/p type of higher order in 1/2S than those in Eq. (9). Here, mq(T) 
denotes the thermodynamlc-equilibrium magnon distribution function which is equal to mq at 
t=0. 

The asymptotic behavior of the Laplace original is governed by that singularity of its 
Laplace transform which is furthest to the right. It is clear from Eq. (10) that such a point for mq 
is p = 0. In the vicinity of this point a considerable contribution to the sums over µ on the left- 
and right-hand sides of Eq. (10) is made by terms with Ωµ ≈ ω

q(0). If ω
q(p) is real in the limit 

p→ 0, the singular part of the Laplace transform in the same limit p→0 is F(ω
q)/p, i.e., in the 

limit t→∞ the function mq(t) becomes identical with F(ω
q). 

The quantity ω
q (0) can be regarded as real in the case when we can ignore electron 

transitions to the conduction subband with the down spins. According to Eq. (7) this occurs if 
min ∆k↓>> min ∆k↑, max Vk. Then, the only important electron transitions to the states in the up-
spin subband are those located near its minimum so that the numbers nk↓ can be regarded as 
equal to zero and among the occupation numbers n0

k↑, practically the only ones which differ 
from zero are those with |k - K| < q0 = (2m*AS)l/2, where K is the quasimomentum corre-
sponding to the minimum of the conduction band and m * is the effective mass. However, for 
these values of k the energy denominator in the second term of Eq. (9) does not vanish at p = 0. 
In this case, in spite of the absence of a thermodynamic equilibrium in respect of electrons, 
magnons in an illuminated crystal are in a thermodynamic equilibrium but their frequencies are a 
function of the illumination intensity. 

If the above conditions are not satisfied, the energy denominator in the second term of Eq. 
(9) does vanish at p = 0, whereas the numerator remains finite. Thus, magnons are found to be 
damped. [The expression (9) is similar in structure with the well-known result of the Ruderman-
Kittel theory of indirect exchange, except that in the latter case the numbers n0

kσ of Eq. (7) are 
replaced with the Fermi electron distribution functions. Since these depend only on the electron 
energy, the numerator vanishes at the same time as the denominator and, therefore, there is no 
magnon damping in the indirect exchange case.] Then, the expression for the photomagnetization 
includes the density of the energy levels of the thermostat pT(E): 
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(p→+0). At low temperatures allowance for the finite damping makes the temperature 
dependence of mq(∞) different from the Bose type. However, at high temperature ϖq'', ϖq''<<T, 
when F(E) is proportional to T, allowance for the finite damping does not alter the nature of the 
temperature dependence of mq(∞) and affects only the renormalized frequency. Under typical 



conditions when illumination shifts the magnon frequencies only slightly, we have the inequality 
~ϖq''>>~ϖq''. If we assume that pT(E) varies with Ј more slowly does F(E), we find from Eq. 
(11) that truncation of integration with respect to Ј at a distance ~ϖq'' from ϖq' gives 
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It follows from Eq. (12) that even if the real v' and imaginary v" parts of the magnon frequency 
shift vq=ϖq- ϖq are of the same order of magnitude, the above assumption of the slowness of the 
change in рT(E) allows us to consider only v' since the correction to mq(∞) is linear in respect of 
vq' and quadratic in respect of vq'' = ωq''. 

3. In estimating the magnitude of the photoferromagnetic effect it is assumed that the 
valence band maximum and the conduction band minimum lie at the center of the Brillouin zone 
and the effective electron and hole masses m* are similar.  We shall assume that the frequency of 
light w is "almost sufficient" to cause electron transitions from the valence to the conduction 
band, i.e., that the Inequality p2

↑<< q2
0  is satisfied, where q2

0 = 2m *AS, p2
↑ =p2

0 - q2
0/4, p2

0 =  
m *(Eg - ω) and Eg is the band gap in the absence of magnetic order.  Under these conditions the 
average number of electrons in the down-spin subband is negligible and the magnon dispersion 
law (7), (9) can be approximated by 
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For unpolarized light, the quantity | V0 |2 is 
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The square of the matrix element occurring in the above expression can be estimated from the 
expression for the effective mass m* in a band γ[5]: 
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where εδ0 is the energy of the state of an electron with k= 0 in a band δ. If we ignore the 
contributions of the more distant bands and allow for the negative nature of the electron effective 
mass in the valence band (m*γ = -m*), we find from Eq. (15) that 
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Assuming that Eg ≈ 1 eV, m* = m0, E0=3⋅106 V/cm, Р↑~u, and a = 3 Å, we obtain the following 
estimate for the parameter Ј: Ј≈1/2 A 10-3 

 

 



According to the results of Ref. 6, the magnon frequency shift (13) shifts the Curie point 
by 

 
0/ ,cT LS aq∆ ≈  

 
which corresponds to ~3°K for AS = 0.5 eV.  This estimate is obtained for the most powerful 
lasers. The effect is still noticeable for lasers whose power is an order of magnitude lower. The 
fact that the laser frequency corresponds to the transparency range of a crystal ensures the 
stability of the effect, at least during short pulses. 

If the valence band originates from the f-type states, then not only virtual photoelectrons 
but virtual photo-holes interact strongly with the magnetization of a crystal and, therefore, both 
types of carrier contribute to the photoferromagnetic effect. 

Moreover, the participation of the f electrons in virtual optical transitions should give rise 
to a dependence of the effect on the nature of polarization of the incident light. In the case of real 
optical transitions such a dependence is simply a consequence of the spontaneous dichroism of a 
ferromagnet, caused by the spin-orbit interaction. In the case of virtual transitions, we can speak 
of virtual dichroism caused by the same interaction. This virtual dichroism is possible also 
because of the spin-orbit interaction in the conduction band if this band originates from 
hybridization of s-type atomic states with other states, for example, with d-type states in EuO 
and EuS. 
1) The terms with the opposite sign of the frequency are omitted because of the smallness of their 
contribution to the effect in HV. 
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