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Solutions are found that correspond to different states of a particle interacting with a 
quantum field in an ionic crystal. 

The motion of an electron in an ionic crystal is described by the Hamiltonian 
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where ω is the frequency of the optical phonons, c is a constant, e is the electron charge, V is the 
volume, and r is the electron coordinate. 

The case of weak coupling of the electrons to the field of the optical phonons, when Hint 
can be treated in perturbation theory, was considered for the first time in [1]. The case of strong 
coupling, when Hint cannot be treated as a perturbation, was first considered in [2]. This paper 
gives a semiclassical theory of the motion of an electron in an ionic crystal, the electron being 
treated quantum mechanically but the field classically. A consistent solution of the quantum 
problem (I) in the case of strong interaction of the particle with the field was given in [3] on the 
basis of the adiabatic approximation with allowance for the translational degeneracy of the 
Hamiltonian (1). In the zeroth approximation, the wave equation has the form [3] (H-E)ψ=0 
ψ= ψ(( )( )pqie / λ )θ  (…Qf... ), p=-i ∂ /∂q, where q is the part of r corresponding to uniform 
rectilinear motion, λ is the fluctuating part of r, and Qf are the field coordinates. For ϕ(λ), the 
following equation was obtained in [3]: 
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In [2, 3], the lowest energy level of the particle in the quantum field was investigated. It is of 
interest to consider the other possible states of the particle in the field. Using the equation 
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 we can rewrite the integro-differential equation (2) in the form 

 

( ) .04,0
2

2
2

=+∏∆=+∏+∆ ϕπϕϕλϕ
µ λλ ceWe                                (3) 

 
We shall seek spherically symmetric solutions of the system (3). We go over in (3) to the new 
variables 
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Substituting (4) in (3), we obtain the following system of differential equations in dimensionless 
variables: 
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with the boundary conditions 
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From the normalization condition ( ) 1
2

=∫ λλϕ d  for the wave function we obtain for the 

electron energy the expression 
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Solutions of the system of equations (5) with the boundary conditions (5') can be found 
numerically on a computer. The method to be used is described in [4]. First, one writes down 
power expansions for a family of solutions of the system (5) near x = 0 satisfying only some of 
the conditions (5') for x = 0. The family of such solutions depends on two parameters. Specifying 
their values, one can solve numerically the Cauchy problem on the given interval [0, xf]. For the 
system (5), one can analyze how a given solution behaves as x → ∞. It was found that there exist 
different values of the parameters for which the conditions (5') are satisfied as x → ∞. These 
values of the parameters (and the solutions to the Cauchy problem for the ordinary differential 
equations corresponding to them) can be found to a given accuracy on a computer. In Figs. l and 
2, we show four solutions describing different states of the electron. In the general case for the 
(n+l)-th solution (n-th mode) yn(x) intersects the x axis n times. The solutions can be readily 
reconstructed if y(0) and z(0) for them are given. For the zeroth and first mode (Fig.l): 
y0(0)=1.021, z0(0)=-1.938 and y1(0)=1.091, z1(0)=-2.320; for the second and the third mode 
(Fig.2): y2(0)=1.118, z2(0)=-2.502 and y3(0)=1.13, z3(0)=-2.61. Note that the case n=0 
corresponds to the one considered in [2]. The agreement is very good. The deviation of our 
solution for the zeroth mode from the solution found by Pekar by the direct variational method 
does not exceed 1⋅10-3 in absolute magnitude. For the first four modes we obtain Γ0=3.5052, 
Γ1=8.060, Г2=12.66, Г3=17.24. 

We calculate the effective masses of the particles in the states we have found. The effective 
mass of a particle in the ground state was calculated for the first time by Landau and Pekar in [5]. 
The expression obtained in [5] for the effective mass is valid for any nondegenerate state. 
Therefore, the effective mass of an electron in state n is 
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Going over in (7) to the dimensionless variables (4), we obtain instead of (7) the expression 
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where  
ω

µα
2

2ce
=  is the electron-phonon coupling constant. For the first four modes, we 

have L=1.1264, L1=0.969, L2=0.873, L3=0.81. It follows from (8) that for Гn
5Ln

-1>32/3α4 the 
effective mass Mn of the "dressed" particle becomes less than the "bare" mass µ. For example, for 
coupling constant б=8.9 (NaCl) the polaron mass is in accordance with (8) already less than the 
electron mass µ for n=2. 
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