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A study is made of the self-localization of carriers in antiferromagnets subjected to an 
external magnetic field. PACS numbers: 71. 50. +t, 75. 50. Ee 

 
It is well known that rather stringent conditions restrict the possibility of self-localized 

electron states in crystals with magnetic ordering (the Heisenberg exchange integral must be 
small and the constant describing the s-f exchange of an electron with magnetic atoms should be 
large) and, therefore, such states can occur only in crystals with low Neel temperatures. 1

The situation is quite different if an electron moves in an antiferromagnet subjected to a 
strong external magnetic field H which does not exceed the critical field Hc for the spin flop of 
the antiferromagnetic sublattices (typical values of Hc are of the order 106-107 Oe). Even small 
deviations of the spins of magnetic atoms due to the interaction with conduction electrons can 
then lead to a localized electron state. In fact, this situation is analogous to the case studied in 
Ref. 2 where it was found that con-denson-type states in a covalent crystal which have normally 
high energies can occur in strong magnetic fields. 

We shall consider a conduction electron in a cubic antiferromagnetic crystal in a strong 
external magnetic field. The electron interaction with the spins of magnetic atoms will be 
described within the s-f model and it is assumed that the conduction band width W is large 
compared with the s-f exchange energy AS/2. In the continuum approximation (i. e., if all the 
characteristic dimensions of the problem are much greater than the lattice constant), the 
directions of the atomic magnetic moments are distributed continuously and the total energy 
functional has the 
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where A~  = AS/2; A is the vector potential of the magnetic field; and ϕ  is the angle between the 
magnetic field and the atomic magnetic moment. For an antiferromagnet with two equivalent 
sublattices at T= 0, the total energy of the mutual exchange interaction of magnetic atoms and of 
their interaction with the external magnetic field H is given by 
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Here, L= J/2a3; J= Z|I|S2; I is the exchange integral; Z is the number of nearest neighbors; S is 
the spin of a magnetic atom; a is the lattice constant; and H= HS/a3 (H is the magnetic field in 
energy units). 

The ground state of the whole system can be determined from the condition that the 
functional (l)-(3) reaches its minimum and will be evaluated by a variational method. The trial 
parameters in Eqs. (l)-(3) are the angle ϕ  and the electron wave function  . Ψ

The minimization of the functional (l)-(3) with respect to ϕ  yields the following 
condition: 
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Equation (4) determines the maximum value of the external magnetic field such that 1<ϕ . We 
shall denote this field Hloc. It follows from Eq. (4) that the local field Hloc is always weaker than 
the field corresponding to the spin flop Hc (Hc= 27/S). We shall restrict ourselves to fields1) H < 
Hloc. 
Substituting Eq. (4) in Eqs. (l)-(3), we obtain the following functional: 
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[The functional (5) does not include terms corresponding to the energy of a crystal without 
electrons.] The functional (5) was studied in Ref. 2. Following Ref. 2, we shall seek the wave 
function Ψ  in the form 
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which corresponds to the approximation of the first Landau band. Substituting Eq. (6) in Eq. (5) 
and minimizing the resulting functional with respect to χ (z) (bearing in mind that the function 
χ  is normalized), we obtain the for χ (z): 
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where Ee is the electron energy. The localized solution χ (z) Is given by 
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where z0 is an arbitrary constant and rz is the radius of the localized state. It follows that the net 
energy gain due to the creation of a localized state is equal to 1/3 |∆ Е|, where . 22 2/ zmrE −=∆
Substituting the wave function defined by Eqs. (6) and (8) in Eq. (4) and setting ϕ  = 1, we 
obtain the following value of the local field: 
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where m0 is the free-electron mass. It follows from Eq. (9) that, for most crystals, the value of 
Hloc is of the same order as the spin flop field Hc of the antiferromagnetic sublattices. 

We shall obtain numerical estimates for the following values of the parameters: m= m0, 
A~ ≈0. 5 eV, J ≈ 0. 5· 10-2 eV, and a ≈3 A. We then find that, for the magnetic field strength 



H≈5·105 Oe (Hc≈ 106 Oe), the electron energy is E*e = h2/2mr2
z ≈ 0. 7· 10-3 eV and the 

characteristic radius of the localization region is rz ≈7 · 10-7 cm. The characteristic length 
p0=√2 cBµ /eH is then p0 ≈ 3. 5· 10-7 cm. It follows that the continuum approximation is 
applicable for these parameters. On the other hand, we find that, for the above dimensions of the 
localization region rz and magnetic lengths po, the condition (p0 /rz)2 «1 holds and we can neglect 
the corrections due to higher Landau bands. 2   The local magnetic field Hloc then differs by less 
than 1% from the critical field Hc (Hloc/Hc ≈ 0. 99). It follows from Eq. (8) that rz~Hc and, 
therefore, the continuum approximation becomes more accurate for crystals with high Neel 
temperatures but, in this case, the energy gain due to the electron localization is reduced   
(E*∝H-2

c). 
 
1) For HC>H >Hloc, there is a region where the atomic spins are aligned, i. e., ϕ  = 0, and the 
diameter of such a region represents an additional trial parameter. When the field is increased, 
the diameter of such a region also increases and tends to infinity for H H→ C. 
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