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The conditions for the formation of self-localized states in antiferromagnets are 
analyzed. Criteria for the stability of such states are derived. Cases of weak and strong 
external magnetic fields are discussed. 
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The possibility of conduction electron self-localization in crystals with antiferromagnetic 

ordering of the lattice spins was first noted by de Gennes.1  He put for ward the hypothesis that 
the self-localized state may be energetically more favorable than the band state of the free 
electron when the spin of one of the magnetic atoms in the antiferromagnetic lattice is reversed. 
In later work, it was shown that states may be even more favorable in which the electron self-
localization takes place in a region where several spins of magnetic atoms are reversed.2 The 
calculation of the optimal configurations of a spin system of magnetic atoms is evidently a 
complex and still unsolved problem. 

Recently, however, it has become clear that the formation of self-localized states in 
magnetically ordered crystals requires the overcoming of the potential barrier arising from the 
short-range nature of the interaction in such systems. 3 It thus became of prime importance to 
discuss the conditions for self-localized states of this type to be possible in principle. In 
particular, the possibility of self-localized states on the surface of a sample has been discussed4; 
here, as the problem is quasi-two-dimensional, there is no potential barrier to be overcome. In a 
recent paper,5 it has been shown that self-localized states can also occur within a sample 
subjected to a strong external magnetic field. 

The present study analyzes, for a number of particular cases, the conditions under which 
localized states are formed in antiferromagnetic crystals. Stability criteria are derived in the 
general case, i.e., without reference to the configuration of the spin distribution and energy of 
such states. Some ways of creating these states in crystals are discussed. 

 
1. FORMATION OF A SELF-LOCALIZED STATE IN CRYSTALS 

HAVING AN UNDEFORMED LATTICE 
 

The interaction between the electron and the spins of magnetic atoms will be described by 
means of the s-f model6: 
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where у and S are the spin operators of the conduction electron and a magnetic atom, f the 
number of the atom, and A(f-g) the s-f exchange integral. We assume, as usual, that the 
conduction band width W is much greater than the s~f exchange energy AS/2. We shall take 
only the nearest-neighbor approximation. 
In the continuum approximation (i. e., when all characteristic dimensions of the problem are 
much greater than the lattice constant), the magnetic moments of the atoms have a continuous 
distribution over directions, and the total energy functional becomes4, 5
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Here, A = AS/2, L = J/2a3, J = ZIS2, where Z is the number of nearest neighbors, I the Heisenber 
exchange integral, a the lattice constant, and 2ϕ  is the angle between the spins of two 
neighboring atoms. 

In the functional (1), the first two terms relate to the kinetic energy of the electron and the 
energy of its interaction with the spins of the magnetic atoms. The last term describes the 
Heisenberg exchange interaction between the atoms. This treatment is essentially analogous to 
the semiclassical description in the theory of a strongly bound polaron: the polarizable medium is 
here represented by the spin system, the spins being regarded as classical vectors. The model 
thus defined is self-consistent: the electron generates a spin distribution (specified by the angle 
ϕ ) that it maintains by its localization therein. 

Let us consider the conditions under which self-localization becomes favorable. Since it 
originates from a state with an undeformed antiferromagnetic lattice, we can take ϕ  ≠ 0 in the 
initial stage of the spin system deformation and the local state formation. Then, from Eq. (1), 
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Substitution of this in Eq. (1) gives for the total energy functional1)
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This is in the same form as the functional given by the interaction of the electron with acoustic 
phonons.7  It corresponds7 to the case where the initial stage of the spin system deformation 
involves a loss of total energy, i.e., the self-localized state is separated from the free band 
electron state by a potential barrier. Using the same method as before,7 let us consider the change 
in the total energy (3) when the wave function is deformed without change of normalization: 
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where ξ = 1 corresponds to the wave function belonging to the extremum of the functional (3). 
Substitution of Eq. (4) in Eq. (2) gives 
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Thus, as ξ increases, a point is reached where the inequality (5) is no longer satisfied. This means 
that a region is formed in the crystal where the spins of the atoms are in parallel alignment (sin 
ϕ  = 0). Let ξcr be the value of ξ for which ϕ =1. Three possibilities exist. If ξcr < 1, the self-
localization is energetically unfavorable and the localized state is unstable. If 1 ≤ ξcr s3/2, it is 
again energetically unfavorable, but is separated from the continuous spectrum by a potential 
barrier. Such a state is metastable. Lastly, if ξcr > 3/2, the self-localized state is energetically 
favorable. The value of ξcr can be calculated on a computer, and is 
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The condition ξcr ≥3/2 for the self-localized state to be energetically favorable may thus be 
written as 
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This condition defines the class of crystals in which the formation of self-localized states of the 
type in question is in principle possible. 

For a numerical evaluation of the inequality (7), we choose parameter values typical of 
antiferromagnets: m* ≈ m, J ≈ 10-2 eV, a ≈ 3·10-8 cm. We then find that the self-localized state is 
stable if A~  > 1 eV. In the majority of crystals, the s -f exchange integral is usually6 in the range 

1~01.0 ≤≤ A  eV. In typical antiferromagnets, therefore, such states will usually not occur. There 
are, however, a number of crystals with extremely low Neel points (such as europium selenide 
and telluride) in which the condition (7) is satisfied and the formation of a state of the type under 
consideration is in principle possible. 

 
 

2. FORMATION OF A SELF-LOCALIZED STATE IN CRYSTALS  
HAVING A DEFORMED LATTICE 

 
The above results can be generalized to the case where lattice deformation (the 

condenson effect) takes place alongside deformation of the crystal spin system in the formation 
of a self-localized state. For an isotropic crystal, the total energy functional of the system is 
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where [ ]ϕψ ,F  is given by Eq. (1), G is the deformation potential constant, К and µ the bulk 
modulus and shear modulus respectively. The variational parameters in Eq. (8) are the electron 
wave function ψ, the angle ϕ, and the strain vector u. Varying this functional with respect 
to u gives the Euler equation 
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where  is the Laplacian operator, 2∇ σ  Poisson's ratio, ),1(2/ σµ += E  )21(3/ σ−= EK , and 
Е is Young's modulus. The spherically symmetric solution of Eq. (9) which satisfies the 
conditions that the strain is finite at the origin and zero at infinity is 
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Substitution of Eqs. (2) and (10) in the functional (8) gives the following expression for the total 
energy: 
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In this case also, therefore, the formation of a self-localized state involves the overcoming of a 
potential barrier. It is important to note, moreover, that taking account of the lattice strain 
involves a further gain in the energy of the localized state, and therefore, a further stabilization of 
such states. According to the condition (7), the critical Neel point value above which the self-
localized state does not exist becomes (1 + κ )5/4 Tc

N, where Tc
N is the corresponding value with 

no lattice strain. To estimate κ, we take in Eq. (12) the same parameter values as in estimating 
the inequality (7). For typical values G ≈ 10 eV, К ≈ µ ≈ 1010-1011 N/m2, κ can reach values ~1, 
i.e.,  the  inclusion  of the strain may raise the critical value of the Neel point by a factor of 
nearly 2. 
 

3. FORMATION OF A SELF-LOCALIZED STATE IN THE  
PRESENCE OF A WEAK MAGNETIC FIELD 

 
Let a weak (nonquantizing) external magnetic field be applied to an antiferromagnet. We 

take first the case of a crystal having a rigid (not deformable) lattice. The total energy functional 
becomes 
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where H~ =HS/a3,. H being the magnetic field in energy units. Varying this functional with 
respect to the angle ϕ gives the condition 
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Substitution of Eq. (14) in Eq. (13) leads to the following expression for the total energy 
functional: 
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where the terms corresponding to the crystal energy without the electron have been omitted, and 
F[ψ] is given by Eq. (3). It follows from Eq. (15) that in the case of a weak magnetic field a 
potential again has to be overcome. 

Substitution of Eq. (4) in Eq. (14) gives 
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From this, it follows that, as ξ increases, a point is reache at which the inequality (16) is no 
longer satisfied. Let ξcr(H) denote the value of ξ for which cos ц = 1. As in Sec. 1, there are three 
possibilities. If ξcr(H)< 1, self-localization is energetically unfavorable. When 1 ≤ ξcr (З) ≤ 3/2, a 
metastable state can be formed. Lastly, when ξcr(H) > 3/2, the self-localized state becomes 
energetically favorable. According to the relation (16), ξcr(H) and ξcr(O) are such that 
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This shows that, if a crystal has a stable self-localized state, as the magnetic field increases the 
state first becomes metastable and then unstable, rapidly disappearing. 

Let us now consider a crystal with a deformable lattice. Clearly, in cases where the 
formation of self-localized states depends mainly on deformation of the magnetic subsystem in 
the crystal (κ«l), the external magnetic field is able to destroy the local state, as with a rigid 
lattice. In this case, the s—f exchange constant in the expressions (13) through (16) is replaced 

by its effective value AA ~1
~~ κ+= . If the interaction of the electron with the lattice strain is 

predominant (κ » 1), the magnetic field does not destroy the local state. In the general case where 
interactions of both types are significant, there may be self-localized states of two kinds in the 
crystal, one due to the deformation of the spin subsystem and the other to the deformation of the 
lattice. 

 
4. SELF-LOCALIZATION IN A STRONG MAGNETIC FIELD 

 
We have discussed self-localized states in crystals having antiferromagnetic spin 

ordering, in the absence of an external magnetic field and in a weak magnetic field. In both 
cases, the formation of self-localized states involves the overcoming of a potential barrier. This 
impedes their formation within the crystal. It has been shown5 that the situation is quite different 
if a strong magnetic field (not exceeding the critical field HC for collapse of the sublattices in the 
antiferromagnet) is applied to the crystal. In this case, self-localization becomes favorable right 
from the initial state of polarization of the spin system, i.e., does not involve the overcoming of a 
potential barrier. Whereas, with no field or a weak field, there is a critical value of the Neel point 
above which the self-localized state is destroyed, in a strong field self-localization is possible for 
any value of the Heisenberg exchange integral. 2)   In this section, the previous results5 will be 
generalized to the case of a deformable lattice. 

The total energy functional in a strong magnetic field, with allowance for the lattice 
strain, is 
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where p =  and A is the vector potential of the field. The independent variation of the ∇− i
functional with respect to ϕ and u gives therelations (14) and (10) respectively. Substituting Eqs. 
(14) and (10) in Eq. (18), we get as the total energy functional 
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which is the same in form as that considered previously.5 The electron wave function and energy 
in the ground state are5
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where rz is the radius of the localized state and мB the Bohr magneton. The expressions (20) for 
the energy and the wave function, which take account of the lattice strain, differ from those for a 
rigid lattice by the presence of the  factor 1 + κ in the expression for the radius rz of the localized 
state. Including the lattice strain thus reduces the characteristic radius of the state, and therefore 
decreases the electron energy by a factor (1 + κ)2. This is most important, since for parameter 
values typical of magnetic crystals with a rigid lattice the gain in the total energy (=1/3  |∆Е|, 
∆E=- /2m*r2 2

z)  by self-localization is only slight, and such states are thus destroyed above 3-
4°K. Including the lattice strain makes such states more stable, the temperature range of stability 
being increased by a factor (1 + κ)2. 

The decrease in the radius of the localization region, due to the lattice strain, reduces the 
local field value at which a region with parallel spin orientation is first formed, 
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In a field Hloc< H< HC, the electron self-localization region contains a region of ferromagnetic 
spin ordering. The ferromagnetic microregion containing a localized electron, formed by a strong 
magnetic field, can itself act as a nucleus for the formation of a stable state (Sec. 1) when the 
field is removed. No potential barrier then needs to be overcome in order to form the self-
localized state. 
 

5. COMPARISON OF THEORY AND EXPERIMENT 
 

Wachter8 examined the effect of a magnetic field on luminescence in crystals having a 
low Neel point, and concluded that the experimental results can be explained by the formation of 
self-localized states in an antiferromagnet. Since this process involves the overcoming of a 
potential barrier (see above), a different explanation is more reasonable. Namely, the 
characteristic energy corresponding to the maximum of the observed absorption band 
corresponds rather to a transition from a local level of a defect such as a valence electron 
localized at a lattice vacancy. This appears the more probable in that the localization of the 
electron near the defect right from the initial stage makes a deformation of its spin environment 
favorable. At present, however, there is uncertainty on this point, to resolve which further 
studies, both experimental and theoretical, are needed. 

There has apparently been no experimental study of self-localization in a strong magnetic 
field. To obtain such states, a low temperature and a strong magnetic field are necessary. The 
formation of these states should be accompanied by a considerable change in the magneto-
resistance and by the appearance of further bands in the infrared. 

 
1)We must emphasize again that the functional (3) corresponds only to the initial stage of deformation. The 

final state of the electron resulting from deformation of the spin system is found as the minimum of the functional 
(1). 

 
2) Here, it is important that the exchange integral should not be too small, since otherwise the sublattices are 

reversed before the strong-field condition is satisfied. The conditions for the states discussed5 to occur are therefore 
the opposite of those for the states considered above to become stable. 
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