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The effects of a two-stage drag on the electrical conductivity and maximum thermoelectric 
power of pure semimetals with a low carrier density are studied. It is shown that the 
maximum in the temperature dependence of the drag thermoelectric power need not be related 
to scattering of phonons from the surface of a sample. This maximum occurs when the two-
stage drag begins to manifest itself in the conductivity. The thermoelectric power due to the 
two-stage drag decreases with decreasing temperature following the T3 law, as in the case of 
the thermoelectric power of typical metals. The proposed theory can explain the observed 
absence of a plateau in the temperature dependence of the drag thermoelectric power of 
semimetals, which is predicted by the theory of a one-stage drag of the Herring type. 
PACS numbers: 72. 15. Eb, 72.15.Jf, 71. 45. - d, 72.10.Bg 

 
A two-stage drag of electrons by phonons in semiconductors and in semimetals occurs because 

carriers are dragged by phonons of wavelength comparable with the electron wavelength and also because 
long-wavelength phonons are dragged by thermal phonons of much shorter wavelengths.1 A two-stage 
electron-phonon drag in perfect crystals with a small number of free carriers can lead to an exponential 
growth of thermoelectric and ther-momagnetic coefficients at low temperatures ~ exp (Θ/T), where Θ is a 
temperature of the order of the Debye temperature. Such temperature dependence cannot be obtained for 
the standard one-stage drag. The expected behavior of the aforementioned transport coefficients was 
observed in Refs. 2 and 3, for single crystals of bismuth of not very high purity. It is clear that such an 
exponential growth cannot continue down to the lowest temperatures because of the phonon scattering 
from, in particular, the surface of the sample, as in the case of the standard drag of the Herring type.4, 5

However, a maximum in the temperature dependence of the thermoelectric power due to the two-
stage drag can be explained also by another mechanism rather than by the scattering of phonons from a 
surface. We can understand this mechanism qualitatively by analyzing the expression for the 
thermoelectric power on the basis of Kubo′s formulas 
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where  and  are heat and electric current operators. The following important conclusions can be q̂ ĵ
obtained from equation (1). It is clear that a can depend exponentially on the temperature only when there 
are two characteristic decay times of the correlation functions )(ˆ;ˆ tjq  and )(ˆ;ˆ tjj , i.e., for carriers 

and phonons. In particular, such a situation is realized for the two-stage phonon-phonon drag when the 
characteristic relaxation time in the phonon system is determined by the umklapp scattering between 
phonons and, therefore, we obtain ~ exp (Θ/T). The relaxation time of carriers, which determines the 
conductivity, is proportional to a power of the temperature since it is governed by the normal scattering of 
electrons from phonons. This result holds at temperatures when the number of phonons available for the 
interaction with electrons is large compared with the number of electrons in a semimetal or in a 
semiconductor. It follows that phonons play the role of a thermostat for electrons: they absorb the electron 
momentum but they do not "feel" effectively the reverse effect of electrons on phonon states. 

However, it can be seen from equation (1) that, in the situation when the correlation functions 
)(ˆ;ˆ tjj  and )(ˆ;ˆ tjq  are determined by the same decay time τ, the quantity α is independent of this 

time. In fact, such a situation applies to metals and semimetals at very low temperatures when the number 



of phonons is comparable with the number of electrons. The no equilibrium behavior of both phonon and 
electron subsystems is then determined by the same electron-phonon interaction. As a result, the 
thermoelectric power due to the two-stage drag should cease to grow exponentially with decreasing T 
when the phonon-phonon drag begins to influence strongly the conduction. The thermoelectric power 
should then decrease with decreasing temperature, as in the standard theory of drag in metals.6 A 
maximum in the thermoelectric power independent of the dimensions of the sample should then manifest 
Itself in this temperature range. 

These considerations apply to the situation when there is only one type of carrier. The effect should 
be then best observable in semimetals. However, since the electron and hole densities in perfect crystals 
are exactly equal to one another, the drag effect does not contribute to the thermoelectric power provided 
the scattering of quasiparticles is due only to the electron-phonon and phonon-phonon effects.7 A nonzero 
contribution due to the two-stage drag appears only when there is an asymmetry in the scattering of 
electrons and holes, for example, diffuse scattering of carriers of one type from the surface of a sample 
and specula scattering of the other type of carrier. The thermoelectric power due to the drag effect then 
increases considerably.7 The situation in the conduction is not so clear. On the one hand, enhancement of 
the scattering of carriers due to a new scattering mechanism should slow them down, i.e., the conductivity 
should decrease but, on the other hand, the presence of an oriented flux of phonons enhances the mobility 
of carriers. Only detailed calculations can predict the behavior of the conductivity. 

We shall study the temperature dependence of the thermoelectric power due to the two-stage drag 
using a model of an isotropic semimetal with a small number of carriers, such as bismuth. We shall also 
calculate the temperature dependence of the conductivity. As already noted in Ref. 7, the transport 
equation used to study the effect of the two-stage drag on the conductivity and describing the motion of 
thermal phonons should include a collision integral for collisions of thermal phonons with long-
wavelength phonons, i.e., with the phonons which interact with carriers and transfer the momentum 
received from carriers to thermal phonons. The corresponding system of transport equations for both 
groups of phonons and for carriers of both types assumes the form 

 

{ } { } { qq
N

qq
U

qq
Nq GFIFFIFFI

T
F

Ts ;;; ++=
∂

}∂
∇                                    (2) 

 

{ } { ±

±
∑+=

∂
∂

∇ pq
N

qq
Nq fGIFGI

T
G

Ts ;; }                                           (3) 

 

{ } { DfIGfI
T
f

T
p

f
Ee pqp

Np
p

p ;; ±±
±

±
±

± +=
∂
∂

∇+
∂
∂

υ }                                   (4) 

where Fq and Gq are the distribution functions of thermal and long-wavelength phonons and fp
± is the 

distribution function of holes and electrons. The quantities NÎ  and UÎ are the collision integrals 
describing the normal and umklapp scattering of quasiparticles; I{fp

±; D} are the collision integrals 
describing the scattering of carriers from long-wavelength objects, for example, from the surface of the 
sample; s is the velocity of sound; and e is the electronic charge. 
We shall seek the solution of the system of equations (2)-(4) in the form 
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where u(q), U(q), and V ± (εp) are unknown vectors and the superscript 0 identifies the equilibrium parts 
of the corresponding distribution functions of quasiparticles. 

The corresponding drift velocities can be obtained by the standard method of successive 
approximations subject to the condition that the normal scattering of quasiparticles is assumed to be more 
frequent than the umklapp scattering.8 Substituting equations (5)-(7) in the law of conservation of the 
momentum,9 we obtain a relationship between U and V±
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where the angular brackets indicate averages of the type 
 

( ) ( ) qdqq ∫ Φ=Φ 3
1
=
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Equation (8) should be supplemented by a system of equations following from equation (4) in 
which the corresponding collision integrals of carriers with phonons include non-equilibrium corrections 
to the phonon distribution function (Ref. 10), i.e., 
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pF is the Fermi momentum; L± is the mean free path of long-wavelength phonons interacting with carriers 
due to their scattering from holes (electrons); L is the total mean free path of such phonons given by 
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Lq is the mean free path of long-wavelength phonons due to their normal scattering from thermal 
phonons;  is the mean free path of holes (electron) due to their scattering from phonons; and l±

fl ± is the 
total mean free path of carriers given by 
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where  is the mean free path of holes (electrons) due to their scattering from additional Fdd Vl ±± = τ
objects. The quantity γ  in equations (9) and (10) is defined by 
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For an isotropic phonon spectrum, it follows from equation (11) that Ts 2≈γ . 
The solution of equation (8) yields the following drift velocity U: 

.11 TVVnmVnmU U
F

d

U

F
d

U

τγ
τ
τβ

τ
τβ −+= −

−−
+

++                                    (12) 

Here, m ± is the effective mass of holes and electrons and n is the carrier density. The quantity 1β  is 



defined by 
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For degenerate carriers, we find that the electric current is given by 
 

( ) ,2 −+ −= FF VVenj                                                              (14) 

where  and  satisfy the system of equations (9), (10), and (12) subject to the assumption that the +
FV −

FV
electron gas is completely degenerate. 

We shall first discuss the conductivity у due to the two-stage drag. A general expression for 2σ  
following from the system of equations (9)-(14) is rather complex and we shall not quote it. Simple 
physical results can be obtained only in certain limiting cases. However, the qualitative behavior remains 
unchanged. We shall study the case when one type of carrier, for example, holes, is scattered secularly 
from the surface and the scattering of electrons is of the diffuse type. Mathematically, this is equivalent to 

∞→+
dτ . The corresponding conductivity 2σ  is then given by 
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In the absence of an additional scattering mechanism , , it follows from Eq. (15) ∞→−
dτ

−− = fll
that the drag effect does not contribute to the total conductivity (as expected) and 2σ  is given by the 
standard expression 
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When there is an asymmetry in the scattering of carriers, the drag effect can influence strongly the 
conductivity. Two limiting cases are of special interest. In the first case, when the terms proportional to 

Uτ  in the numerator and denominator in equation (15) can be neglected, we obtain from equation (15) a 
result which agrees with the corresponding expression obtained in Ref. 10, i.e., 
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In this limiting case, corresponding essentially to the absence of the two-stage drag, the drift of 
phonons does not influence the conductivity. 

In the opposite limiting case when is large and the terms in the numerator and denominator in Uτ
equation (15) not containing can be neglected, we again obtain from equation (15) a result for Uτ 2σ  
which reduces to equation (16). However, in contrast to the case studied earlier, the conductivity у 
increases in the present context due to the electron-phonon drag since, in the absence of the drag, the 
expression for σ  should involve . The effect of the drag is to increase the conductivity up to a value −

dτ

corresponding to the absence of additional scattering of carriers, i.e., approximately by a factor of +−
ff ll . 

The temperature dependence of the total conductivity should be stronger than the temperature dependence 
corresponding to the scattering of electrons and holes from equilibrium phonons. When the ratio +−

ff ll  is 
large, which corresponds to the experimental conditions for bismuth, the deviation of the temperature 
dependence of 2σ  due to the phonon-phonon drag from the value of у corresponding to equilibrium 



phonons should be observable. 
The thermoelectric power due to the phonon-phonon drag can be calculated from equations (9), 

(10), and (12) and from the condition j = 0. The corresponding result in the limit  is given by ∞→+
dτ
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In the limit when the phonon-phonon drag has only a weak effect on the conductivity, we have 
1≺≺qLUsτ  and the last term in the denominator can be neglected; it then follows from equation (18) 

that the expression for α2 reduces to the corresponding result of Ref. 7. In the opposite limit, using 
( )32

1 FspTTsn ≈β , we can transfer equation (18) to the form 
 

( ) ( ).1 3
2

−+− +≈ fffF lllspT
e

α                                                       (19) 

 
It follows from equation (19) that α2 decreases with decreasing temperature as T3. However, in 

contrast to typical metals with one type of carrier whose thermoelectric power due to the drag of electrons 
by phonons decreases at low temperatures T «Θ и following the law (T «Θ)3 (see Ref. 6), we find that α 
due to the two-stage drag is proportional to the cube of a large parameter T/spF, i.e., to the principal 
parameter in the theory of the two-stage drag. 

It follows from our results that the temperature dependence of the thermoelectric power due to the 
two-stage drag should exhibit a maximum even in the absence of the scattering of phonons from the 
surface of a sample. In fact, the finding that the thermoelectric power due to the phonon drag is 
proportional to ( )( svlL Ff

U ± )  indicates that the aforementioned situation should occur in real crystals. 

Since  holds for semimetals similar to bismuth, high thermoelectric emfs can occur even when 310≈svF

the mean free path of carriers is longer than the phonon mean free path. Since the ratio (T/spF)3 can be 
quite large at moderate temperatures, the maximum value of α2 due to the two-stage drag can be much 
greater than k/e which represents the maximum attainable value of the thermoelectric power due to the 
standard drag of electrons by phonons. 

The second important conclusion following from our theory is that there is no plateau in the 
temperature dependence of the thermoelectric power due to the two-stage drag. Such a plateau is typical 
of the one-stage drag of the Herring type in semimetals.4 This result follows since the temperature T0 at 
which long-wavelength phonons determine the scattering of carriers and the temperature T1 
corresponding to the conditions when the Fermi momentum is equal to the average momentum of thermal 
phonons differ from one another in semimetals similar to bismuth.10 However, such a plateau has not 
been observed for typical semimetals such as bismuth, which supports our mechanism of the two-stage 
drag for the thermoelectric power of bismuth. In fact, the thermoelectric power α of pure and perfect 
bismuth single crystals was found to increase at temperatures to the right of the maximum. 

Since the characteristic maximum in the temperature dependence of the drag thermoelectric power 
is usually attributed to the scattering of phonons from the sur-face of a sample, it would be desirable to 
carry out care-ful measurements of the temperature dependence of α at temperatures below its maximum. 
Our estimates indicate that the exponents in the power law governing the decay of α with temperature to 
the left of the maximum of the thermoelectric power differ at least by one for the mechanism studied in 
the present paper and for the mechanism corresponding to the scattering of phonons from the surface. 
Such a difference should be measurable. Naturally, the temperature corresponding to the maximum in the 
thermoelectric power due to the mechanism studied in the present paper is independent of the dimensions 
of the sample. 
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