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It is well known that two qualitatively different pictures arise in the description of the 

motion of an electron in an ionic crystal. In the first case, when the electron interacts weakly 
with the ionic lattice of the crystal, its motion is the same as the motion of a free band electron 
whose energy is shifted downward with respect to the bottom of the conduction band, and the 
effective mass is replaced by the renormalized mass1 (weak-coupling polaron). In the other 
limiting case, when the electron interacts strongly with the ionic crystal, an entire series of 
different self-consistent states of the electron and lattice, each of which has its own effective 
mass and radius2-4 (strong-coupling polaron), arises. 

Although the motion of an electron in an ionic crystal is described in both limiting cases 
with the help of the Pekar-Frohlich Hamiltonian, each case requires its own special methods of 
analysis. Thus, for example, in the strong-coupling theory a special form of adiabatic 
perturbation theory has been developed2,4 in which the trans-lational degeneracy is removed 
before the perturbation expansion is made. It has been possible to relate both descriptions within 
the framework of Feynman's varia-tional approach,5 in which a smooth upper bound was 
obtained for the energy of the ground state of the polaron for all values of the electron-phonon 
coupling constant a (see Fig. 1). 

We call attention in this connection to Ref. 6, where the thermodynamic properties are 
calculated with the help of a special method for performing the calculations and for finding 
averages of T-products. The approach developed there is more convenient for performing 
specific calculations than is the use of path integrals.5 It seems to us that it has definite 
advantages in the construction of general proofs concerning the choice of the approximating 
Hamiltonians (this is illustrated in Ref. 6 for the example of the linear Bogolyubov model), in the 
investigation of the characteristics of the behavior of a polaron in external fields, etc. 

 
1. A generalization of the functional variational approach to the calculation of the energy 

of the ground state of a polaron is proposed in Ref. 7. The generalization consists in the fact that 
a model in which the electron interacts with another particle by means of an arbitrary, not 
necessarily quadratic (as in Feynman's approach5) potential v(r, r'), is used as the trial model in 
the variationai calculation. The trial action in this case is given by the formula 
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The action (1) takes into account the translational in-variance of the initial problem with the 
Pekar-Frohlich Hamiltonian, in which ћ = ω = m = l; ω is the frequency of longitudinal optical 
phonons and m is the electron mass. 

As a result, the following inequality for the energy of the ground state of the polaron is 
obtained7: 
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µ  the reduced mass of the two-particles trial model, and 
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treated, together with the function u(r), as the variational parameter. We see that Φ[µ, u] in (2) 
can be regarded as a modified expression of the Bogolyubov- Pekar- Tyablikov functional,2-4 into 
which it goes over when µ = 1 (strong coupling). The main point here is that as µ → 0, Φ[µ, u] 
leads to the groundstate energy E0= -α of the weak-coupling limit (see below). 

In order to obtain the best upper bound for E, it is necessary to minimize the functional 
Φ[µ, u] with respect to both the variable µ ∈ [0, 1] and the function u(r) under the condition 
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The condition δ[Φ- e ( ) 2
r∫ u dr] = 0 leads to the equation 
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 The total energy E is related to T and ε by the relation E= 1/2 (ε + T). 

The solution of this problem for finding the minimum of Φ[µ, u] is given by sets of values of µ, 
е, and u(r) which satisfy Eqs. (3)-(5). It is easy to see that for all α the following exact solutions 
exist: 

a) µ0 = 0, ε0= -2α, u0(r)= const; for this solution we have E0(α) = -α; 
b) µn = 1, ε= εn. u= un(r), where εn, un(r) are solutions of Pekar's equation3: 
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Here, as shown in Refs. 2 and 4, Eq. (6) is asymptotically exact in the limit α → ∞ 
All solutions of (6) satisfy Eq. (5) as a result of the virial theorem: E= -T. For the energies of the 
four lowest states with µ = µn = l, we have8, 9

 
E1(α)= -0.1085 α 2, E2(α)= -0.0205 α 2, E3(α) = -0.0083 α 2, E4(α)= -0.0045 α 2.          (7) 

 
 
 



As is well known, E0(α) and E1(α) are asymptotically exact expressions for the energy of 
the ground state of a polaron in the limiting cases α → 0 and α → ∞, respectively. If other 
solutions of Eqs. (3)-(5) with µ ∈ [0, 1] and with energy less than E0 and E1 in some range of 
values of б do not exist, then the energy of the ground state of the polaron, obtained from the 
variational estimate, will be simply -a for α < α 1 and -0.1085 α 2 for α > α 1. The value α 1 can 
be interpreted as the critical value пf б, corresponding to a first-order phase transition from the 
free (α < α 1) into the self-localized state (α > α 1); we have α 1 = 9.21. 

In Ref. 10 these results were obtained when Eq.(4) was solved by the Ritz variational 
method. Extremely laborious numerical calculations had to be performed. We see here that to 
obtain there results numerical calculations are not needed. (The other two solutions obtained in 
Ref. 10 in addition to E0 and E1 are not solutions of Eqs. (3)-(5), but are consequences of the use 
of the Ritz method.) 

The existence of a set αn (n = 2, 3, ...) of "critical" values of a, determined by the 
equations 

 
- αn = En(αn),                                                     (8) 

 
also follows from (7).  For α > α2 = 48.78 the first excited state is not a free state, but a self-
consistent localized state with energy E2(α); for α > α3 = 120.48, the second excited state with 
energy E3(α) becomes the self-consistent localized state, and so on. The complete pattern is 
illustrated schematically in Fig. 1. 

We emphasize that we are discussing here only the picture following from (2), and we 
ignore the question of how good an approximation to the energy of the polaron it gives. As is 
well known, Feynman's theorem gives a better numerical estimate of the energy of the ground 
state of a polaron, with the exception only of very high values of a, and there is no phase 
transition.  Here, we do not even know whether or not there exist other solutions of (3)-(5) with 
µ ∈ (0, l) and with an energy lower than E 0 and E1 in some interval of α. These solutions, if they 
exist, do not appear in the solution of the problem by the Ritz method. The final solution can be 
obtained only by exact numerical solution of (3)-(5). 
 

2. It follows from the picture described in the preceding section that at the critical 
transition points such characteristics of the polaron as its mass and radius and the number of 
excited phonons must change in a jump-like manner. According to Refs. 5 and 11, the following 
exact path-integral representations exist for the effective mass m*, the radius R of the ground 
state of the polaron, and the average number N of phonons in the cloud surrounding the electron: 
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FIG. 1. Upper bound for the energy E of the ground state of a polaron as a function 
of the coupling constant α; curve 1 shows (schematically) Feynman result,5 while the 
curves Е0= -у, E1 = -0.1085α2, Е2= -0.0205α2, and Е3= -0.0083α2 show the results 
obtained by solving the problem of the extremum of the functional Φ[µ, u] (2): 
α1=9.217, α2=48.78, α3=120.48. 

 
where S[r] is the action of the polaron, which according to Ref. 5 has the form 

 

( ) ( ) ( ) ( ) ,
rr2

r
2
1r

00 0
2/3

2 ∫∫ ∫ −
−=

−−β στβ β

στ
σταττ edddS �  

( )

( ) ( ) ( )[ ]

( ) ( )
( )

( ) ( )

.;
r

r
,kJ 21

0

0

k 21

lim ττττ

β

β

ττ

β
−==

∫

∫

=

−
=

−+−

∞→
rr

rS
rr

rrirS

eD

eD
 

 
Within the framework of the approximation (1) of Ref. 7 the function J(k,τ) must be replaced by 
the function J0(k,τ)  give by 
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Then the approximate expressions for m*, R, and N, calculated with the help of (9), assume the 
form 
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For µ =0, from (10) we obtain:   m0* =1 + α/6, R0=1/√2 and N0 = α/2.  For µ = 1 and E = E1(α), 
we obtain: m1* = l + 0.0227α4, R1 =3.2585/α, N1 = 0.2170α2.   The corresponding jumps in these 
quantities at the critical point б1 are. ∆m* =162.3; ∆R = 0.3535; ∆Ν = 13.82. The jumps at all of 

the critical points αn can be calculated analogously with the help of (10). 
 

3.  As noted in Sec. 1, the picture obtained is based on the assertion that there are no 
solutions differing from those indicated in Sec. 1.  For µ = 1 (α → ∞), Φ[µ, u] coincided with the 
Bogolyubov-Pekar-Tyablikov functional whose extremals with respect to u(r) describe certain 
states of the electron in the polarization well. The question of the description on the basis of (6) 
of the electron spectrum in the well formed by the electron upon polarization of the crystal with 
intermediate coupling remains open.  Whether or not it is possible to construct solution of (6) 
which are close to Pekar's solution with µ< l must be determined by solving the problem (3)-(5) 
on a computer No significant progress has yet been made along this path and the conclusion 
arrived at in Ref. 10 and analyzed above that a phase transition is possible from the picture of a 
weak-coupling polaron to a strong-coupling polaron at some value of α, must be viewed with 
great caution. 
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