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A translation-invariant quantum theory is developed for the motion of a conduction electron in an 

antiferromagnet subjected to a strong magnetic field. The cases of strong and weak coupling of the 
electron to the magnetic system of the crystal are considered. Critical values of the external magnetic field 
for which the conduction electron undergoes a transition to a self-localized state are obtained. The 
effective mass of carriers is calculated in the limits of strong and weak coupling. 

It was shown in Ref. 1 that a self-localized state of conduction electrons can be created in an 
antiferromagnet subjected to a quantizing magnetic field. In such a case, the configuration of the spin 
system of the antiferromagnet changes, which leads to a reduction in the total energy of the system 
consisting of an electron plus atomic spins. It is important to note that no potential barrier needs to be 
overcome to achieve self-localization, which facilitates experimental investigation of the effect. 

According to Ref. 1, self-localization of conduction electrons in strong magnetic fields leads to a 
reduction in the energy for arbitrary values of the Heisenberg exchange integral but this does not mean 
that the electron invariably undergoes a transition to a self-localized state in strong fields. To clarify the 
type of motion realized in antiferromagnets, we need to solve a quantum problem In which atomic spins 
are regarded as operators and not o-numbers. In this sense, the problem is analogous to the problem of a 
polaron in the cases of weak and strong coupling.2,3 It should be noted that the Interaction of an electron 
with the magnetic lattice in an antiferromagnet is governed not only by the ratio of the exchange constant 
of the interaction of a conduction electron with the spins of magnetic atoms to the constant of the mutual 
exchange of magnetic atoms, but also by the magnetic field strength. Another important distinction in this 
case is that the interaction of a carrier with the spin system in a quantizing external field cannot be, in 
general, described by a single universal coupling constant. 

 
1. QUANTUM DESCRIPTION OF AN ELECTRON IN AN ANTIFERROMAGNETC 

 
The most general form of a Hamiltonian describing electron motion in an isotropic antiferromagnet 

subjected to a magnetic field is given by 
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where H, describes electron motion in a magnetic field with a vector potential A; Hist corresponds to the 
s-f interaction of a conduction electron with the magnetic subsystem of the crystal; finally, HM is the 
Hamiltonian corresponding to the interaction of lattice spins subjected to a magnetic field H (H is 
measured in energy units). The following notation is used in Eq. (1): Sm is the spin of an atom located at 
Rm; σm' is the electron spin; I(Rm-Rm') and A(Rm-Rm’) are, respectively, the Heisenberg and s-f exchange 
integrals. 

The spin operators in the spin wave approximation are replaced by the Bose creation and 
annihilation operators of spin deviations and, in the system of coordinates connected with the spin of a 
magnetic atom, we obtain 
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where Sm

± = Sm
x ± Sm

y. Assuming that the electron spin is completely polarized in the direction of the 
magnetic field, i.e., setting σm = σsδ(Rm - r) and taking into account the fact that the s-f exchange 
Interaction has a short range, A(Rm-Rm') = Aδ(Rm-Rm'), we can use Eq. (2) to obtain the following 
expression for the interaction Hamiltonian 
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The quantization axis is chosen to be parallel to the magnetic field (for a general system of coordinates, 
θm denotes the angles between the spin Sm and the external magnetic field). 

The assumption that the electron spin is parallel to the magnetic field is justified for crystals with a 
wide conduction band W » AS/2 provided the energy of the electron spin in a magnetic field -µH exceeds 
the shift in the electron energy due to the lattice deformation stimulated by the spin moment, 'This 
condition is clearly equivalent to the condition under which the external magnetic field can be regarded as 
quantizing. Passing in Eqs. (1) and (3) from the operators of spin deviation (2) to the representation of the 
magnon creation and annihilation operators ζ + and ζ and using the Bogolyubov-Tyablikov canonical 
transformation 
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which diagonalizes the quadratic form HM, we obtain the following expression instead of Eq. (1): 
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Here, ω1q and ω2q correspond to two different branches in the elementary excitation spectrum of an 
antiferromag-net. The form of the Hamiltonian Η(2)

int' quadratic in the magnon operators can be found in 
the Appendix. In the long-wavelength limit (q→0), we obtain 
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where h = H/Hsf , where Hsf is the spin flopping field of (he sub-lattices; J= ZIS2; Z is the number of 
nearest neighbors) a is the lattice constant. Consequently, the part of the transformed Hamiltonian Η(1)

int 
which is linear in the magnon operators describes only the Interaction of an electron with the acoustic 
branch of the excitations in the antiferromagnet. The electron interaction with the optical branch appears 
only in the terms quadratic in the operators ζ+ and ζ in the transformed Hamiltonian. The explicit form 
and importance of such terms in the cases considered below are discussed in the Appendix. 
 



2. PARTICLE ENERGY AND MASS FOR WEAK COUPLING 
 

Summarizing the results of Sec. 1, we can write the total Hamiltonian describing electron motion 
in an antifer-romagnet subjected to a magnetic field in the form 
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where ωq and Cq are defined by Eq. (6), where, according to the results of Sec. 1, ζq ≡ ζ1q. We shall now 
consider the case T=0 when the modification of the spectrum due to the interaction with "acoustic" 
magnons is small and can be regarded as a perturbation. Since Eq. (7) has the standard "polaron" form, 
we can conveniently use the we known results of perturbation theory. In the second order of perturbation 
theory, the electron energy is given by: 
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The index α in Eq. (8) labels the electron eigenfunctions in a magnetic field and it includes the quantum 
num-bars n, kz, and ky, where n is the number of a Landau level and kz and ky are the components of the 
electron momentum in the corresponding directions (we use the gauge Ax = 0, Av = Hx, and AZ = 0). The 
matrix elements 
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which appear in Eq. (8) evaluated with respect to the wave functions of Landau oscillators are given by 
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nL −′  is a generalized Laguerre polynomial; and eHcB /20 =µρ = . 
To evaluate the spectrum in the vicinity of the bottom of the conduction band in a quantizing 

magnetic field, we can restrict ourselves to the approximation of the first Landau band (n = n' = 0). In this 
case, Eqs. (8) and (9) yield the following expression for the electron energy: 
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where the summation with respect to q is carried out over the first Brillouin zone (π/a, π/a, π/a).  
Expanding the expression (10) in powers of k in the neighborhood of k = 0 and carrying out the 
corresponding Integrations, we obtain the following expression for the electron energy is the continuum 
limit (ρ0/a » 1): 
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It follows from Eq. (11) that ∆E0 represents the shi in the electron energy due to a deformation of the spin 
system and m** is the effective mass of a particle which system along simultaneously with the spin 
deformation it stimulates. 

If perturbation theory is applicable, the renormalized effective mass m** should differ only slightly 
from the effective mass of a "bare" electron m*: 
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Taking into account Eq. (13), the inequality (14) can be interpreted as a criterion for the magnetic field 
strength which the weak-coupling approximation holds: 
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where ρ0C represents a critical magnetic length for which spin flopping of antiferromagnetic sublattices 
occurs. 
 

3. PARTICLE ENERGY AND MASS FOR STRONG COUPLING 
 

A self-consistent method of treatment of strong interactions of particles with a quantum field taking 
into account the translation degeneracy of the Hamiltonian (7) was developed by Bogolyubov and 
Tyablikov4-6 on the basis of the adiabatic approximation. In the limit of adiabatic coupling, the magnon 
frequencies are low and, therefore, we can set , where ε is a small parameter. In the zeroth qq νεω 2==
approximation with respect to ε, the Hamiltonian (7) yields the following functional which determines the 
electron energy and the electron part of the wave function Ψ(r): 
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where C = v/ε2 and н is the velocity of the particle. Submitting Eq. (6) in Eq. (16) and setting v = 0, we 
obtain from Eq. (16) 
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The functional (17) is the same as the functional derived in Ref. 1 in a quasiclassical study of spins in a 
crystal. 

Following Refs. 5 and 6, we obtain an expression for the longitudinal effective mass (v = vZ): 
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In the approximation of the first Landau band, using the wave functions corresponding to the ground state 
of the functional (16) 
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be obtain the following expression for the matrix elements which appear in Eq. (18): 
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Replacing summation in Eq. (18) by Integration and using Eq. (19), we obtain an effective mass in the 
following form: 
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Equation (20) implies that the effective mass of a particle increases with increasing magnetic field. 
Because of our assumption of strong coupling of the particle to the field, the effective mass m** of the 
particle should be much greater than the initial mass of a free particle 

m** >> m*.                                                             (21) 
In particular, using the values of parameters employed in Ref. 1 in the calculation of self-localized states, 
i.e., AS/2 ≈ 0.5 eV, J ≈ 0.5 · 10-2 eV, Hsf ≈ 106 Oe, H ≈ 0.5 · 106 Oe, and a ≈3A, we find that the effective 
mass evaluated from Eq. (20) is m** ≈ 10m*. Making use of Eq. (20), we can reformulate the criterion 
(21) in the following form: 
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Hence, as expected, the criterion of strong coupling derived from the condition (21) is opposite to the 
criterion of weak coupling [see the inequality (I5)]. Comparing the conditions (22) and (15), we note that, 
since h1 < h2, it is natural to regard the range of magnetic fields 
 

h1 < h < h2                                                                                      (23) 
 
as corresponding to intermediate coupling of an electron to the magnetic lattice of a crystal. 
 

4. DISCUSSION OF RESULTS 
 

Our results determine the conditions under which electrons in an antiferromagnetic crystal subjected 
to a quantizing magnetic field become self-localized. In particular, it is shown that, for an external field 
within a certain range defined by Eq. (23), electrons undergo a transition from a delocalized state to a 
self-localized state. The transition to a self-localized state is accompanied by an increase in the effective 
mass of carriers which can exceed the mass of an electron in a delocalized state by several orders of 
magnitude. As a result, an increase in the longitudinal magnetoresistance of the crystal with increasing 
magnetic field should be observable [ if the increase in the mass as a function of the magnetic field 



strength obeys the dependence (20) up to H = Hsf, the crystal should undergo a transition from a 
conducting state to an insulating state, since m** → ∞]. For H > Hsf, in addition to the spin flopping of 
sublattices in the antiferromagnet, electron transition from a self-localized to a delocalized state also 
occurs:  this results in a sharp reduction in the magnetoresistance (reverse transition from an insulating to 
a conducting state should take place in the limit HLOC →Hsf). This discussion is clearly purely qualitative 
and a rigorous analysis should be based on a calculation of the carrier mobility. This would require 
further study. 

 
APPENDIX 

 
We shall discuss the contribution to the ground state energy of the terms in the interaction 

Hamiltonian quadratic in the spin deviation operators. Using Eq. (4) for the part of the interaction 
Hamiltonian quadratic in the magnon operators, we obtain 
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where j = 1, 2 corresponds to the acoustic and optical branches of the spectrum. In the long-wave length 
limit, we find that 
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We shall show that, in the weak-coupling limit (A → 0), the contribution of the Hamiltonian defined by 
Eqs. (A.1) and (A.2) to the electron energy is proportional to A3, i.e., it is of higher order in the email 
parameter than the contribution of the linear terms (12). We shall first write the chain of equations of 
motion for the Green functions of the electron operators a+ and a: 

 

.~

~~
2

,,,,,

+
′′−

+
−′

+
′′

+
−

+
−

′
′

+
′′

′
′

+
′

+
−

+
′

′′

+
′′′′′

+
′

∑∑∑

∑∑∑

+++

++++=

kkjqqj
qq

jqqkkjqqj
jqq

jqqkkjqqj
jqq

jqq

q
kkqq

q
kkqq

k
kkkkkkkk

aaAaaBaaB

aaCaaCaaTiaaE

ζζζζζζ

ζζδ
π

�

               (A.3) 

 
Carrying out the following decoupling: 
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in Eq. (A.3), we find that the contribution of the quadratic terms in the weak-coupling limit is 
proportional to A (ζ+ ζ), where (ζ+ ζ) are the average occupation numbers of magnons. In the absence of 
the electron-magnon interaction, (ζ+ ζ) = 0 at T = 0. For a nonzero interaction, the average occupation 
numbers of magnons are nonzero. However, it is easy to verify that, in the limit A → 0, (ζ+ ζ) ∝ A2 holds 
and, therefore, the total contribution of the quadratic terms to the energy is proportional to A3. 

To estimate the contribution of Η(2)
ist in the strong coupling limit, we shall transform Eq. (A.1) 

introduce complex field coordinates by 
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Substituting Eq. (A.4) in Eq. (A.1), we obtain 
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It follows from Eq. (A.4) that the acoustic part of the Hamiltonian H(2)

ist contains only the field moment 
Pq1 and, in the zero approximation in е, it does not modify the ground state energy (17). The part of H(2)

ist, 
which includes the optical coordinates Qq2 together with H(1)

M forms a quadratic form which has a single 
minimum Qq2 ≡ 0 and also yields a zero contribution to the ground state energy. The operators of the field 
moment which appear in Eq. (A.5) should, in general, contribute to the effective mass defined by Eq. 
(18), but it follows from Eq. (19) that this contribution is 0(N-1). 
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