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A self-consistent macroscopic approach which describes the s-f exchange amplification of spin waves in
magnetically ordered crystals is developed. The amplification of spin waves by electron drift in isotropic
antiferromagnets is considered for different configurations of the electric and magnetic fields, and the effects

accompanying the amplification are discussed.

The possibility of amplification of spin waves
in magnetically ordered crystals by fast motion of
electrons was first pointed out in Ref. 1, It is
important that the mechanism of the interaction of
electrons with the crystal magnetization considered
in Ref. 1 was relativistic, which requires the use
of beams of charged particles moving at velocities
close to the velocity of light.2 The relativistic
mechanism was then considered in many subsequent
papers. For example, this mechanism was discussed
for magnetic semiconductors in Refs. 3 and 4. The
fact that the ratio v3/c? (vg is the phase velocity
of spin waves and c is the velocity of light) which
enters the expression for the gain of spin waves

is small represents an obstacle to such amplifica-
tion.

On the other hand, it is well known that the
s-f exchange interaction of conduction electrons
with the magnetization in magnetically ordered
rrystals is strong and may give rise to amplifica-
tion which is several orders of magnitude greater
than the gain due to the relativistic mechanism pro=-
vided the condition v, > vg (v, is the drift veloe-
ity of electrons) is satisfied. According to Ref.
3, the amplification in crystals with an antiferro-
wagnetic ordering, where the s—f exchange amplifi-
cation mechanism is allowed by the law of conser-
vation of momentum, is 4-5 orders of magnitude
greater than the amplification due to the relativis-
tic mechanism. Unfortunately, the microscopic
approach used in Ref. 5 holds under the condition
ki » 1 (where k is the wave vector of the spin
vave and ¢ the electron mean free path), which
IS usually not satisfied in real crystals. The avail-
able experimental data on the mobility of carriers
in magnetically ordered crystals (usually, the in-
fquality u < 102 em2-V-!.gec"! is satisfied ¢) indi-
cate that the opposite limiting case kt ~« 1
pplies to most magnetically ordered crystals. It
'8 our aim to describe self-consistently the amplifi-
Cation of spin weves in antiferromagnets due to
tlectron drift using a macroscopic hydrodynamic
4Pproach which is asymptotically exact in the limit
kl « 1. The Landau-Lifshitz equation for the
’\*};gnetization includes not only the effective field
“ ich exists in a crystal in the absence of carriers,
nut also an effective field due to the s—f exchange.
‘" this situation, our approach may be applied
_\" describe effects in which the classical s~f ex-
‘ange interaction plays an important role.

L LANDAU-LIFSHITZ EQUATIONS FOR ANTI-
FERROMAGNETS TAKING INTO ACCOUNT THE
s—f{ EXCHANGE

The evolution of the magnetization of sublattices
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of an antiferromagnet M; and M, is described in

the macroscopic approach by the Landau-Lifshitz
equations

oM, Jot =g | M, X ], } (1)
OMs/ot =g [M, X H,).

where g = 2u,/h; u, =eh/2m ,c is the Bohr mag-
neton; H, and H, are effective magnetic fields acting
on the first and second sublattices. Taking into
account the effect of conduction electrons, we can
determine these fields by varying the total energy
functional ¢ of the antiferromagnet with respect

to the sublattice magnetizations

fi, = —30/AM,, H,=—30/M, (2
d=dy 4 0, (3
@o == S a.,M,M.d’r + 5 ({1 %‘L'%gf‘dar — '.‘;‘ S Bm (Ml + Mg} d’r (4)
i oM, @
~(HM M) e Sa (Tz“ %:—-}-%‘f— %2'—:)41»

0y s —dy [ (Mi+ My nryarr (%)

Here, &, is the energy of the antiferromagnet in
the absence of conduction electron; §,, a, and «,,
are phenomenological constants; H™ is the magnet-
ic field induced by the magnetization of the anti-
ferromagnet; H is an external magnetic field. The
energy ¢, corresponds to the interaction of con-
duction electrons with the magnetization; Ag =

Aal3/4 u,, where A is the s—f exchange constant,

a is the lattice constant, and n(r) is the carrier
density in the conduction band.

The expression (8) corresponds to the case
when all the electrons are assumed to be spin-
polarized, i.e., it is assumed that the condition

—;-A(Sf-{-' S5 >, holds, where ¢ = ef is the

Fermi energy for a degenerate gas and ¢ = kgT
for a nondegenerate electron gas, and S is the
spin of a magnetic atom.

Using Eqs. (1)-(5), we obtain the Landau—
Lifshitz equations including the s-f exchange in
the following form:

Mot - - g My X Ty) 42 (M, X 4,n (1) l.l.} (8)
IMyjit = g {Me X Ba] +g [Ma X 4,n (1) 1,1,

where 1, is a unit vector parallel to the z axis.

It follows from Eq. (6) that the s—f exchange con-
tribution can be regarded as an additional magnetic
field if we replace in Eq. (1) the field H by H +
Agn(r, t) 2;. Linearizing the additional terms in
Eq. (6) in the vicinity of the equilibrium values
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of the magnetization and density, we obtain
gIMi X A (r )= 2 M, X A 2l
+ 2 My X Angl,] 4 2 [my X 4,0,

where m, (r, ) and n,(r, t) are nonequilibrium
corrections to the magnetization and density which
should be added to the equilibrium values M,, ,
M,,, and n,. It can be seen from Egs. (6) and
(7) that the first term on the right-hand side of
Eq. (7) yields the following contribution to the
equilibrium magnetic field:

(7N

fij = =3, (M + May) + H + g4,n,l,.

The last term on the right-hand side of Eq. (7)
leads only to a renormalization of the magnon fre-
quencies. It follows from these results that we
need to retain only the second term on the right-
hand side of Eq. (7) in the linearized Landau-—
Lifshitz equations, provided we carry out the cor-
responding frequency and field renormalizations.

Considering the second term in Eq. (7)
M. X A (r. 01 (7a)

we can see that this term vanishes identically for
a ferromagnet since M,=M,{1,” and, for an anti-
ferromagnet, it vanishes in fields H > Hgf, where

Hgr is the spin-flop field. According to Ref. 3,
this is a consequence of the law of conservation
of the total number of magnons at T = 0 in a ferro-
magnet. Using all these results, we can rewrite
the system of equations (6) for the Fourier compo-
nents of the field and density in the following form:

—iwmy =g (Mg X [h+ 4,01 — (8, + k%) my— (B + a52k2) ma]) (8)
—lome =g (Miﬂ X [h + Al"’ll - @+ Jk:) m: — (all + ﬂlzk:) m.]) }

2. MAGNETIC SUSCEPTIBILITY

We shall base our macroscopic description of
the s—f exchange interaction of conduction electrons
with a spin wave on the following expression for
the force acting on an electron when a spin wave
travels in the z direction in the crystal:

— 0!z (% )

where ¥ is the s—f exchange Hamiltonian. We
can regard this force as external (or electromotive
force) which corresponds, according to Eq. (5),
to the following field strength for the external
forces:

m (224 20 @

;Y oz

where e is the electronic charge. As a result, we
obtain the following expression for the electrostatic
induction D:

A,e oML

oM
= (S +5E) (10)

Dy=+E 4

where ¢ is the permittivity. To obtain a closed
system of equations, we need to supplement Egs.
(9) and (10) by the Maxwell equations and hydro-

dynamic equations for the electron liguid in the
medium:

curl H™ — @, an
div “(M)=—'ﬁ1’.di\'(5’|+M!) (12)
divD = —en, (13)
av . Ty
=(- ;.‘)(E+v><m—""+(?)?"?' a9
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Vo —— —
divj+ = =0,

(13

where p = —en and j=—pv are the charge densi,
and the current. Equations (11) and (12) descrihe
magnetization oscillations in the magnetostatic
approximation. Equation (13) relates the inductiq,
defined by Eq. (10) to a deviation of the electrop
density from its equilibrium value. Equation (14,
describes the drift velocity of electrons in a ag-
netic field taking into account collisions (v is the
electron collision rate) and the contribution of the
tensor representing an internal pressure [the lagt
term on the right-hand side of Eq. (14)]. The equy-
tion of continuity closes the system of equations
(9), (10), and (11)-(15). Introducing in Eqgs. (11
(15) the Fourier components of the magnetization,
density, and velocity, we obtain from Eqs. (9).
(10), and (13)-(15) the following expression for
the deviation of the electron density from its
equilibrium value:

&2 (my (k. ©) 4 my (k, w)) {16
Vt-'}z"“("’_kvb)x(m"k_)- i

n' (k, w)=An,

Dvi? | wlsin? (kvy — w — iv)

W —kpy T wd c0s? B — (kvp — w — iv)?
where 8 is' the angle between the magnetic field
and the electron drift velocity; D is the diffusion
coefficient of electrons, i.e., D = kgT/mv; we =

eH/me is the cyclotron frequency; wR = e2n,/evm
is the dielectric relaxation rate of electrons. Sub-
stituting Eq. (16) in the Landau-Lifshitz equations
(8), we obtain the following expressions for the

components of the generalized susceptibility of an

antiferromagnet including the effect of the s-f ex-
change:

X{w k)s=skvy—w— iy +

(17

§ wi . w3 ol
lzz = _‘m Yoo Tyy= Yo w; ——) ,
o2
Xer = Yo —T——prF7r (18!
22 w2 — w4+ 2FG
_ Ty . Tw,02n .

Xy =~ TETF Yo~ £ Fy (o] — @) (ol — ot £ 2FC)
F=gMy V1 — H*[HGF,, (19
F= kA4 n,/m

Vg 4+ (0 —kvy) X (w, k)
W= (P, =1t (20
. (gM) 28y (a — ap) k2 (1 — H’["?

(2
G = (are — o) k2 (M) VT — 17 Tidg

The expressions (18)-(21) determine completely
the magnetic susceptibility tensor for an isotropic
antiferromagnet taking into account the drift of
electrons. The high-frequency magnetic suscepti-
bility tensor %(k, w) is one of the fundamental quan
tities which determine the spin wave spectrum in
a crystal, the average value and correlation functii
of the magnetic moment, scattering of light and nev
trons by spin waves, etc. We shall now apply our
results to investigate the effect of electron drift
on the spin wave spectrum.

3. AMPLIFICATION OF SPIN WAVES

It follows from Egs. (11) and (12) that the
spin wave spectrum can be determined from the
dispersion equation

k2 +/l1:k,~ij,-j(k, wy=10 (2:

Using Egqs. (18) and (22), we obtain the following
dispersion equation for the magnetization which tak’
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into account the s—f exchange:

(0 — o®) (2 — ) + 2FG]=0 (23)

it can be seen from Eq. (23) that the effect of the
s-f exchange on the optical branch reduces only
to a renormalization of the frequency (see Sec. 1)
and does not contribute to the damping. This resuit
was obtained in the microscopic approach in Ref. 5.
We shall now consider the case of a magnetic
field parallel to the drift velocity of carriers. Us-
ing Eas. (21), (19), and (17), we obtain from Eq.
23) :
( \"’: — Dsks) (vor + (w —key) (hrg — o — iv) + l)vk"') = —Ak.‘v‘v,
A= oMy Jl— /I’]lls’-'fuxk (eje) A2\ (@ — 240)728,
vy = g M VT (a = a) (1 = Wl g

(24)

where vg is the phase velocity of spin waves for the
branch w_. Equation (24) is asymptotically exact
only in the limit of frequent collisions v > u,

.- kv, i.e., in the case when the hydrodynamic
description used in our approach is justified. In

the limit of frequency collisions, we obtain from

£Eq. (24)

(0 —k23) (wp =i (0 — kvy + iDE?)) = —Akde,, (25)
Setting
frrgjo) =1 +ia(w), a{w)<<l, (26)

we obtain from Egs. (25) and (26) the following
expression for the damping decrement of spin waves;

1 Awylcd
2
+ 5

“91('“)=_'f E) Z
Uln - "=
' (") ( i
vhere y = (v,/vg — 1), and wp = v%/D is the dif-
fusion frequency.

It follows from Eq. (27), that, for v , 2 vg,
damping of spin waves changes to amplification.
The expression (27) is analogous to that obtained
for the amplification of sound in Ref. 4. At a fixed

frequency, the gain reaches a maximum at a veloc-
ity given by

(27)

g% 2 0y (1 gl 0pop) (28)
where

25 (1)~ Q0% (1 A e fungrp) 29)

Q - A%S:a \'T:WEI.‘QK-‘!M (30)

Fstimating the maximum gain from Egs. (29) and

(30) for an antiferromagnet with parameters A =
.3eV, S=2, w= 10 sec”?, ¢ = 20, a = 3:10"°
¢m, and w? v wR wp, wWe obtain o ~ 0.1 which clearly
exceeds the possible damping of spin waves in
magnetically ordered crystals by several orders of
magnitude.

When the magnetic field is inclined at an angle
* to the electric field, wg and wp in Egs. (27)-(29)
sl;}ould be replaced by wg = wr/ £ and wp = wp &,
Where

S=(1 4+ @) (1 + wicos?02) (31)

i particular, we find that £ = 1 + wi/v? for a trans-
verse field. In this case, the magnetic field plays

a double role: for £ =1 + wZC/ w2, the drift veloc-
ty is quite independent of the mobility and is

given by

ry=c{E X} U3
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Another important feature of the case of a
transverse field is that the value of vygy defined
by Eq. (28) corresponding to the maximum gain
is reduced, which facilitates experimental observa-
tion of the effect under study. :

4. CONCLUDING REMARKS

Among the most stringent conditions for the
observation of drag and amplification effects of bulk
spin waves by the electron drift in antiferromag-
nets is the Cherenkov condition. It is thus partie-
ularly important to consider effects that can iden-
tify interactions of electrons with spin waves for
which the Cherenkov conditions is not necessary.’
Among such effects we can include the drag of
carriers by a spin wave, which represents an effect
opposite to the effects considered earlier. The
radioelectric effect is so weak in ordinary nonmeag-
netic crystals that it requires powerful sources of
radiation to be observable. The situation is quite
different in magnetically ordered crystals where
the main contribution to this effect is due to the
drag of carriers by a spin wave excited by an ex-
ternal electromagnetic wave. The magnitude of this
effect in antiferromagnets can be estimated from
the condition of balance between the momentum,
transferred from the wave to the carriers and the
resultant electric field E

E == (W/ner,) Imk (32)

where W is the density of the energy flux trans-
ported by the spin wave. It follows from the resuits
of Sec. 3 that the absorption coefficient of spin
waves Im k/k in an antiferromagnet with n % 103%-
10'% cm~3 can reach values ~1072-10"1, i.e., it can
be three to four orders of magnitude greater than
the electronic contribution to the absorption coef-
ficient of spin waves in ferromagnets. Setting
W=1Wem™2, n=10?* em~3, vg = 105 cm-sec™,
and Im k ~ 10 em™, we obtain from Eq. (32) the
following estimates for the strength of the resultant
field: E ~ 0.1 Veem™!. As already noted, the
main simplification in the observation of the radio-
electric effect compared with the amplification effect
is that it is no longer necessary to create drift
currents of carriers in the sample. Hopefully, this
conclusion may assist in overcoming the present
difficulties in materials science that stand in the
way of experimental realization of the effeect of spin
wave amplification in antiferromagnets.
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