Spectra of bound phonons in crystals containing electron centers
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Modification of the phonon spectrum by an excess electron is studied for an F center in a crystal. The local
phonon frequencies are calculated for the ground and first excited self-consistent states of an F center in KCl.
It is found that local modes of frequencies higher than the optical phonon frequency exist for such centers.

One of the important problems in crystal lattice
dynamics is the calculation of lattice vibrational spec-
tra for lattices containing various defects and impuri-
ties. The existence of an excess electron interacting
with lattice vibrations in a crystal can be regarded
(from the point of view of lattice dynamics) as a
special type of defect. If the electron interaction
with the lattice is weak so that perturbation theory
is applicable, such an interaction leads only to re-
normalization of phonon frequencies and does not
cause qualitative changes in the spectrum.! Phonon
frequencies in the case of strong interaction were
first calculated for an ionic crystal in the adiabatic
limit in Ref. 2. According to Ref. 2, in this limit-
ing case the phonon spectrum changes qualitatively
and a discrete set of local vibrations is created. In
practice, it is particularly interesting to calculate
the phonon spectrum when an excess electron is
localized near a lattice defect. For example, in the
case of F centers in ionic crystals, the tight-bind-
ing approximation can be applied to the electron—
phonon interaction with a 2 0.5 (see Ref. 3), i.e.,
for most crystals. The lattice spectrum then changes
not only because of the interaction of lattice vibra-
tions with an electron localized at a defect, but also
due to the effect of the defect itself. A self-con-
sistent calculation of both these effects is at present
rather difficult. Both effects usually contribute to
different regions of the spectrum and can be identi-
fied experimentally. We shall consider the effect of
the electron—phonon interaction on the lattice dynam-
ics under tight-binding conditions. Our results
for the lattice spectrum of a crystal containing elec-
tron centers can be very important in a study of
infrared absorption and of Raman and neutron scat-
tering in ionic crystals.

1. EQUATIONS OF THE ADIABATIC THEORY

Most general calculations-of the phonon spectrum,
irrespective of the type of defect, as based on the
self-consistent solution of the equations of the adia-
batic theory.* It follows from Ref. 4 that the solu-
tion of equations for the electron and phonon sub-
systems reduces to the solution of the followng chain
of equations:
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where H(})and H{1) are the nuclear kinetic energy
and the Hamiltonian of the electron subsystem; E i)
and W(1) are the total and electron energies of the
system; ¢(1) and ¢(i) are the electron and phonon
wave functions which appear in the expansions in
terms of a small parameter
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It follows from Egqs (1)-(3) that
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We note that W(?) is a quadratic form
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where eui = Q(ﬁ) — Qx are phonon coordinates charac-
terizing the deviations from the equilibrium position
Q(ﬂ) which can be obtained from the requirement that

the form

(9, Az =o.

(10)

linear in the displacements, vanishes.

The matrix Mgy is Hermitian and has the follow-
ing properties:
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Here, Mgk and «i denote the orthonormalized eigen-
vectors and eigenvalues of Migy. Their actual values
will be obtained for an electron at an F center later.

2. ADIABATIC APPROXIMATION FOR AN F
CENTER

The total Hamiltonian of an F center has the form

_
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where r is the electron coordinate; v = ze?% ¢ is the
effective defect charge; {Qyx, Pk} are complex lat-
tice coordinates; Cx = vBra/Q. We seth =1,u
const = 1, and 2m* = 1 in Eq. (14), where m* is the
effective electron mass and w, is the optical phonon

frequency. Following the adiabatic approximation
treatment described earlier, we obtain
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Equation (1) for the electron wave function ¢©).
r) then assumes the form
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using Eq. (10), we obtain for Q)
(20)
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Equation (4) yields the following equation for the
e function of nuclei:
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Introducing normal coordinates
o= O A%, 7= —i (3/0%,),
=Tt (22)

and usm%‘ the properties (11)-(13) of the quadratic
form W( 2), we obtain from Eq (22)
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To evaluate the frequencies of normal vibrations

wg, we shall make use of an equation for ¢, Set-
ting
P, E)=}':Euxn(’)- (24)

and using Eq. (2), we obtain the following equation:
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Using the properties (11)-(13) and the definition
(26), we then obtain from Eq. (7)
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The condition that the off-diagonal elements of
the quadratic form in £g on the right-hand side of
Eq. (27) should vanish yields the following restric-
tion on the eigenvectors Agk:

(1 — 0} Ay = —2 (X, Crefirg), (28)

The system of equations (26) and (28) deter-
mines the frequencies of normal vibrations. We
solved this system numerically.

3. RESULTS OF NUMERICAL CALCULATIONS

The equations of the zeroth approx]matlon (19)
and (20) yield the following system of equations:

(29)

V2 (1) + 2210 () 9'(7) + (1) 2 () + W3 (1) =0,
(30)

VAT () + 4me? (r) =0,
where the function 2 «lI(r) can be interpreted as the
potential due to the polarization induced by an elec-

tron localized in the vicinity of a defect and ¢(r) is
the zeroth-order electron wave function. According
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to the rsults of Ref. 5, the system (29) and (30) has
a discrete set of spherically symmetric solutions each
of which can be characterized by a quantum number
n = ng + 1, where ny is the number of nodes of the
wave function. The wave function with n = 1 corre-
sponds to the lowest energy level and describes the
ground state, whreas all the other wave functions
correspond to excited self-consistent states. Figure
1 shows the wave functions u (x) = u (ar) = J4w/a§¢ (r)
for the ground (1) and first excited (2) states of an
F center in KCI obtained in Refs. 5 and 8. We would
like to emphasize that our theory can be applied to
all the self-consistent excited states determined from
Eq. (29) and (30).

To determine the first-order electron wave func-
tion, we transform the system of equations (26) and
(28) to
[V’ i .all(r)+ 3 +”' |\ {r) = T—
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where
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U=33 Kr, oYX (#Yo{r) d3rd?'. (33)

Here, I(r) and ¢(r) can be determined from the
zeroth-order equations (29) and (30). The linear
integrodifferential equation (31) with a symmetric
kernel defined by Eq. (32) determines a real set of
eigenvalues w} for the squares of the frequency; the
ground state was investigated numerically in Ref. 7
in the case v = 0 (free polaron). The results of
numerical calculations for an F center in KCl (v =
0.84) are listed in Table I; here, wy, are the nor-
mal frequencies characterlzed by a principal quantum
number n and an orbital quantum number ¢. The
frequencies wy; correspond to a discrete set of local
vibrations which accumulate rapidly near the vibra-
tion frequency of an unperturbed lattice as s in-
creases. We shall determine the spatial damping of
such states. Equation (23) yields the following ex-
pression for the lattice displacements:

. Q
u, (r) = 2 TR g3, = & j
A
Using the expression (28) for Agy, we obtain
from Eq. (34)
E e (r) X (r')
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In the limit r > », we obtain for ¢ > 0 the de-
pendence ug(r) « r"%~% For & = 0, we can use the
orthogonality condition ( ¢, Xg) # 0 and obtain
ug(r) = r* from Eq. (35). It thus follows that the

ul (r) ~
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TABLE I.
States of F Center in KCl

Phonon Frequencies w, ¢ of Ground and First Excited Self-Consistent

Ground state | First self-consistent state

”
! 2 3 | 4 |2 | 3 4 I s
0 0.876 0.925 0.996 1.05 0.855 0.986 0.996
1 0.857 0.982 0.994 2.25 0.945 0.985 0.992
2 0.975 0.994 0.:02 0.979 0.995
2 0.992 0.949 0.989
4 0.979

phonon wave functions satisfying Eq. (2) decay
rapidly with increasing r and describe fairly local-
ized states.

DISCUSSION OF RESULTS AND COMPARISON
.WITH EXPERIMENTS

In contrast to local phonons, which appear due
to lattice distortions caused by defects, the spec-
trum of bound phonons obtained earlier is due to the
electron—phonon interaction (dielectric modes®1!). It
appears that such modes were observed in experi-
ments on GaP (Ref. 9) doped with donor impurities.
A wide Raman scattering peak at an F center in KCI
was observed in Ref. 12 near wgxp = 0.89w, and was
attributed to the scattering from bound electron—
phonon modes. This value of wgyp, is close to the
calculated value listed in Table I, w = 0.876w,. Ob-~
servation of local phonon frequencies higher than the
limiting frequency (w = 2.25w, according to Table I)
is of interest for the excited self-consistent states.
It foliows from the results of Refs. 2 and 11 that
anomalously high ratios of intensities of the infrared
and Raman scattering with participation of local
phonons calculated per single electron center could
be expected for the excited self-consistent states.

A numerical analysis of Eqs. (31)~(33) for an
excited self-consistent state of an F center indicates
that if v < vep (vep ~ 0.21) the spectrum of bound
phonons includes negative squares of the normal
vibration frequencies. Such complex frequencies
in the spectrum of F centers indicate the possibility
of a phonon (pseudo-Jahn—Teller) instability of ex-
cited self-consistent states with a characteristic de-
cay time ~|wy|~. Centers with v ~ vgp occur for

4.

LiCl, LiBr, and many fluorides of rare-earth metals,
Clearly, this may be the cause of the absence of
luminescence of such crystals observed in experi-
ments on photoexcitation of color centers.?
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