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(aSTRACT. A theory of the shielding of the solvated electron in
 Lute solution of a strong clectrolyte whose ions are fairly inert in
<istion to the solvated electron is proposed. The consequences of
.,, ,onic mechanism of localisation are discussed. In particular, the
. of the absorption band maximum of the solvated electron with
~rease in the ionic strength of the solution is interpreted.

Ihe Debye— Hiickel theory,’ developed in relation to classical
s, cannot be used directly in the description of the shielding of the
“walised excited electron in solution. On the other hand, the known
~dels of the solvated electron describe only its interaction with the
--re solvent and it is therefore necessary to extend them to the case
¢ 3 solution with a non-zero ionic strength. Such a generalisation
.11 heen achieved? for the polaron model. In this study we do not
-sie the model specific and only certain model-independent
~asequences are deduced.

We shall suppose that the problem of the solvated electron
:Juces to a one-electron problem—to a non-linear Schrédinger
rquation:

(Y ]-E)¥=0. 6h)

it cnergy is given by E[¥] = [dVP*H[¥]¥. We introduce a
“.actional F[¥] such that

SFISW =2 @

tor the moment we postulate that F is independent of
emperature:  OFfOT = 0. This means that we assume that there
fisls a comparatively simple model of the localised electron in
*tuch the solution of the problem of the minimum in the functional
+.¥], subject to the normalisation [dV|¥|> = 1, yields Eqn. (1),
sble F generated by the solutions of this equation is the free energy
I'solvation. {The energy E[¥,] and the free energy F[¥,] of the
-tlocalised state W, should be zero.}

An example of such a model is Pekar’s polaron:>*
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*3re we put for the moment d g/dT = 0 and dm/dT = 0. Here m
* the effective mass of the electron, ¢ = (g7 —&;"), €4 and &, are

fflopt.ical and static dielectric permittivities of the solvent, & is the
~electric constant, and e is the charge of the proton.

We now return to the general problem (1)—(3). We assume that
a strong electrolyte, whose ions are fairly inert in relation to the
solvated electron during its lifetime (this does happen—see Pikaev
and Kabakchi®), is dissolved in a liquid. Eqn. (1) then must be
replaced by the expression

(A[¥]—e® [V )-E)¥=0, &)

in which the potential ®, generated by the ions, obeys the
Poisson — Boltzmann equation adjusted for self-consistency:
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where n; is the concentration of ions with the charges ez;
(the electroneutrality condition is

}El niZj==0 );
;
® is the potential generated by the ions, and kg is the Boltzmann
constant. The functional of the electron energy is

Elwl=| avwgiwiv—e) avorwi vy ®
The functional F is replaced by the following functional:

Fu[¥, O]=F[¥]+F.u(Y¥, @1, )]
where
Fion = —_t:';fi jdV(V(D)z"

—TZ n dV[eXp(—-sz—j; (@+¢,[\P]))— 1]. (10)

The problem of determining the extremum in the functional
Fo:[¥,D] subject to the normalisation of ¥, is equivalent to the
problem defined by Eqns. (5)~(7).

The functional Fio[¥,®] and the total energy functional:

Eol¥,01=E[¥]+-2 Jav (Vo). an
form what is ‘“almost the Gibbs—Helmholtz equation”
E.=Fi0:—TdF,,/0T, 12)

in which ¥ and ® (arguments of the functional Fi) cannot be
differentiated with respect to temperature. At the extremum of the
functional Fio[¥,D), this equation is converted into the true
Gibbs —Helmholtz equation

Elot=Ftol_TdFLot/dT. (13)

The functional Fio, represents the electrostatic free energy for the
non-linear Poisson—Boltzmann equation [Eqn. (6)1,*¢ while the
functional F,o represents the free energy of the entire system. If
deJdT # 0, then the expression for the energy Ein changes in
conformity with Eqn. (13).”

Evidently, an increase in the ionic strength of the solution
increases the stability of the localised state:

dFu _ TN _o
dn n

(14)
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where

N= anjdV[exp( 2L @+ @,[\D])) ] 15)
i

is the change in the number of ions induced by the localisation of

the electron, while the concentration parameter n is introduced by

means of the equations

Z kyz;=0,
i

The ionic contribution to the localisation is order-generating: it
can be shown that, if one puts de/dT = 0, then [subject to the
electroneutrality conditions (16)}, the entropy S is negative:

S=—dF.,/dT<0. amn

The question arises how strong is the ionic mechanism of the
localisation. Evidently, at high concentrations of ions (several moles
per litre) the model (5)—(7) ceases to operate. However, in order to
gain a qualitative (and model-independent) idea about the kind of
contribution that ionic shielding makes to the localisation of the
electron, one may abandon this factor and consider the limit n— co.
In this limit, O[¥] = —®.[¥] = (e/e)D,[¥], where O,[¥] is the
potential of Pekar’s polaron [see Eqn. (7) and Eqns. (3) and (4)]. In
the usual solvents with &, > &, the effect of ionic shielding is weaker
than that of the polarisation of the solvent.

The linearisation approximation analogous to the usual
Debye —Hiickel theory [expansion of the exponential function in
Egns. (6) and (10)] makes it possible to write

(16)

=—N<(, "
(D[IP]_Zmeoe.j 4 IW(I)P [1 ( "‘ )] (19)
Flon[qf]=_
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(20)

where rp = (1/e) (g8, kpT/I)" is the Debye radius and I = Yn,z}

J
is the ionic strength. The linearisation approximation can be exact
or inexact at low concentrations depending on the kind of functional
of ¥ which has to be found. At high concentrations, this
approximation becomes exact [see Eqn. (6)]. It follows from
Eqn. (20) that

T . 1
Fig = }_‘E&Fm + %—I-Jdvl nl_lfgo ‘I’(l')!4 + O(T)- @1

In the limit n—0 in the region of the “small electron radius™, i.e.

(={ av ¥ 2<ro, @2)
we obtain the usual Debye— Hiickel theory:
Fu = lim Fioe = 2k6TN + o(I%), 3
ot = lim Fiox = 3ksTN + o(I'%), 4
E= linéF — 4ksTN +0(11.2}, (25)
1/2
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On absorption of a light quantum, the solvated electroy &
migrate either into the conductivity band or into an exciteq it
adjusted for self-consistency) localised state. In the former case, i,
absorption energy W is —E, while in the latter it is W= E
where the energy E of the excited state ¥, in the potential we"
the ground state ¥y is given by the linear Schrodinger equation

(H[Wo]—e®[¥,]-E)¥,=0. (\y
The deviation of the W (I) relation at low values of 7 from E:

(25), ie.
W=W|,,,+ul*,
where

3
€ -
A= (ksT(0e4)*) 2, (o

may be a sign of the transition to the excited state (at 300 K a:

= 80, we have x = 0.04 eV M~%). Low values of I are defin:
by Eqn. (22) or, if one assumes that <r> =~ 3 A and T ~ 300%
they are defined by the condition I <€ (g,/40 ) M.

Data are available for solvated electrons in solutions of Mg(.
LiClO,, and LiCl in water and of LiCl in heavy water;®® v
increase in the concentration of ioms, a hypsochromic shift of t
absorption band is indeed observed [see Eqn. (25). Tt
characteristic quantity 004 eV for 7 ~ 1 M agrees with t:
experimental value. However, the data of Kreitus and co-workers”
represent values of W scattered over the range / ~ 0—5 M wi
most values ~ 1/2M and it is therefore difficult to reach a conclusic:
on their basis concerning the W (J) relation for low values of 1. Tt
polaron model defined by Eqns. (3) and (4) is qualitatively consiste:
with the experimental relation W(I) only in the range from 01
3 M.? However, a rigorous correspondence between the descriptic:
based on Eqns. (5)—(7) for any model A[¥] and the experiment:
relation W (I) can apparently be expected only for low values ¢
I: 1< (c,/40) M.

We may note in conclusion that the possible shift of I
conductivity band as 7 changes® does not affect our discussion.
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