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Abstract — The functional of the total energy of an excess electron in a cluster of polar molecules is used to
find spherically symmetrical solutions corresponding to the extremal functional values. The problem is solved
in the continual approximation. There exist two different types of solutions corresponding to two types of states.
Solutions of one type describe an electron localized within the cluster, while those of the other correspond to
the state in which the electron density is mainly distributed outside of it. The cluster is shown to have a critical
size at which the two solutions coalesce. The smaller clusters do not have states with electrons localized within
them. For clusters of n water or ammonia molecules, the energies of localized states corresponding to various
n values are in close agreement with experimental values. Estimates of the number of molecules necessary for
the formation of bound polaron states also agree with available experimental data.

According to modern views, a solvated electron
does not belong to a particular molecule but partici-
pates in collective interactions with many atoms of the
polar medium. This in turn implies (see review [1]) that
starting with a certain size, clusters containing the same
molecules as those of the polar medium should also
interact with excess electrons. A study of the depen-
dence of the properties of an excess electron in a cluster
on the cluster size should shed light on the patterns of
electron solvation in condensed media. Thanks to
progress in experimental techniques, precision mea-
surements of the energy of binding of excess electrons
with small water and ammonia clusters comprising n
molecules were performed over a wide range of cluster
sizes:n=2,6,7,and 11 - 69 for waterand n =41 - 1100
for ammonia [2, 3]. At the same time, there is still no
consistent theory satisfactorily describing the observed
phenomena.

In this work, excess electrons in clusters are treated
in terms of the polaron model based on a continual
description of the medium and on representing a cluster
of polar molecules by a dielectric sphere in the vacuum.
We proceed from the consistent polaron theory devel-
oped by Pekar [4] and the results obtained in our works
on extended electron states in polar media {5, 6] and
globular proteins {7, 8].

MATHEMATICAL MODEL

Clusters are treated using the continual model. Let
Q be the region occupied by a cluster (a sphere of
radius R). According to Pekar [4], the total energy func-
tional for the excess electron that strongly interacts

with the polar medium can then be written as

2
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where ¥(r) is the normalized wave function of the elec-
tron, II(r) is the potential of medium polarization; m
and e are the effective mass and charge of the electron,

respectively; € is the effective dielectric constant of the

medium given by & = &_' — €, , where €, and g, are
the high-frequency and static medium permittivities;
and # is the Planck constant. On the right-hand side of
(1), the integration is over the whole space in the first
term and over region £ in the two others.

To find the extremal values of electron energy and
electron wave functions, functional (1) should be varied
independently with respect to ‘¥ and ITunder the condi-
tion of the normalization of wave function V. After nec-
essary transformations and the introduction of dimen-
sionless variables, the problem of finding the extrema
corresponding to spherically symmetrical wave func-
tions reduces to the boundary-value problem

2
Y=y +yz-1) =0,

@
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z X
with the boundary conditions
y'(0) = z'(0) = 0;
3

(Xz+ 1) yXp) + Xpy' (X} =05 2(Xp) =0,
where X} is the dimensionless radius of the cluster.
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The dimensionless variables are related to the initial
ones as follows:

r=AQmW) " x;

Y= W (et) " (me2m)y; M= 1We'z.

Electron energy W is found from the condition of wave
function normalization:

“

(W] = 2me*a 26 T2, where T = [ &
0

The right-side boundary condition relating y to y' at
x = X follows from the boundedness of the electron
wave function, which at x > X, is described by the lin-
ear Schrédinger equation

2
'+ ;y' -y=0. ()]

Therefore for x > Xj, the solution nonincreasing at
infinity can be represented in the form

yx) = XRy(XR)x-l exp(Xg —x). )]
The dimensional cluster radius R is related to the
dimensionless X, value as

-1
R = #CmW) X, =5'2me) TX,. (8

It follows from (8) that there exists a complex nonlinear
relation between R and X,. If the boundary-value prob-
lem [equations (2) and (3)] is solved for a given X,
value, the solution can be used to calculate first I" and
then R. We can find X, corresponding to some cluster
radius R only if the R(X;) dependence is determined
numerically.

NUMERICAL SOLUTION
OF THE BOUNDARY-VALUE PROBLEM

The boundary-value problem [equations (2) and (3)]
was solved numerically using an approach similar to
that described in Balabaev and Lakhno [5 - 8]. We will
only mention the main points in order to clarify the
essential features of the calculations. The task was con-
siderably simplified by using the CURVE program [9].
The program finds a connected branch of the curve
given by the system of equations fix) = O in the
n-dimensional space of points [dim(x) = n, dim(f) =
n— 1]. The algorithm presupposes the existence of a
starting point x, for which f{xo) = 0. There should also
be a subroutine for calculating function f values for
given x vectors.

The principal steps of solving the boundary-value
problem are as follows: (i) At x = 0, equations (2) have
a singularity, and, at the first step, the boundary condi-
tions on the left are shifted to a near-by point x,
(e.g., xo= 0.001). For this purpose, the y(x) and z(x)
solutions in the neighborhood of point x = O are
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expanded in power series. These series are substituted
into (2) to find relations between the expansion coeffi-
cients; it turns out that all coefficients can be expressed
in terms of y, = ¥(0) and z, = z(0). (ii) The number of
expansion series terms for y, and z, is chosen such that
the values of the functions and their first derivatives at
point x = x, have the required accuracy. (iii) The
Cauchy problem is solved numerically for system (2)
with various y, and z, values along the [x, X] segment.
The integration gives the y(Xz) = y(Xi; yo z,) and
Z(Xz) = 2(Xz; Yo, 20) values and the values of the corre-
sponding derivatives. The boundary-value problem (2)
and (3) can be considered solved if these values satisfy
conditions (3) at x = X,. This is achieved step by step.
(iv) For given y, and z,, the Cauchy problem is solved
on some segment [x,, xc]. The solution z(x) intersects
the x axis at some point x*. Let us set X = x* and find
the solution to the boundary-value problem using this
X, value. This leaves only one unsatisfied boundary
condition relating y(Xy) to y'(Xj) at the right-hand end.
(v) CURVE is used to find a curve given by one equa-
tion with two variables:

F(yg, 2o) = 2(XR; Yo 20) = O. ©)
The X value and the initial values of y, and z, at curve (9)

~ are taken from the preceding step. The calculation of F

for known argument values is described above. The
obtained curve relating y, and z, at X, = 10 is shown in
Fig. 1. Figure 2 gives the @(yp) = (X + 1)y(Xz; Yo, 20) +
XryY'(Xz; ¥o, 20) dependence obtained for (yy, z,) points of
the curve shown in Fig. 1. Figure 2 shows that ¢(y,) is
zero at various curve (9) points. It follows that the cor-
responding y, and z, values correspond to the solutions
to the boundary value problem given by (2) and (3),
because all four boundary conditions (3) are satisfied at
these points. (vi) Solutions to the boundary-value prob-
lem at various X, are determined by two conditions for
the corresponding Cauchy problem:

F (o, 20 Xp) = 2(X;5 ¥o» 20) = 0,
Fo(yo 2o Xp) = (X + 1) Y(Xg; yor 20)
+ X2y (Xg: Yo 20) = 0.

We know how to determine the values of the left-hand
sides in system (10); the (yy, 29, X) point satisfying (10)
is also known. The curve relating these three variables
can therefore be reproduced using CURVE.

Equations (4) and (5) make it possible to convert
dimensionless variables in the solutions to the bound-
ary-value problem (2) and (3) into dimensional ones
and calculate cluster radius R, electron energy W, total
energy /i, and other physical quantities and establish
relations between them.

(10)

SOLUTIONS FOR THE GROUND STATE

Figure 3 shows the dependence of the magnitude IW]
of the ground state energy of an electron within a clus-
ter on cluster radius R. This dependence is indicative of
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the existence of a critical cluster size R = 4.091/p A),
where L = m/my, and m, is the mass of the free electron.
There are no bound electron states in smaller clusters.
At R >R, ground states can be of two types. The branch
situated above the W, critical value corresponds to the
states in which the electron is localized within the clus-
ter; the other branch describes surface electron states.
In such states, the electron mainly resides outside the
cluster. The R = R_ point is the bifurcation point at
which the solutions branch.

The dependence of the total electron state energy in
the cluster I on cluster radius R is shown in Fig. 4.
The branch corresponding to the lower total energy val-
ues corresponds to internal (according to our terminol-
ogy) states while the other branch refers to external or
surface states. It follows from Fig. 4 that, for clusters

with radii R below the R, = 4.85¢ /i (A) value, positive
total energies correspond to both internal and external
states. This means that, in the (R, R,) interval, both
states are metastable. When R > R,, internal electron
localization becomes energetically favorable. Figure 4
also shows that external states are metastable for clus-
ters of any radius.

Both external and internal states are self-consistent
states of the electron—cluster system. They coexist and
are separated from each other by a potential barrier.

The wave functions corresponding to the internal
and external electron states near the critical cluster
radius are shown in Fig. 5. For such a cluster, the prob-
ability of the occurrence of an electron within it is 0.95
for the first solution and 0.62 for the second one.
The probabilities of the occurrence of an electron out-
side the cluster are then 0.05 and 0.38, respectively.
For the critical cluster radius R = R, the two solutions
coalesce, and the probabilities of finding an electron
within and outside the cluster are 0.82 and 0.18.

Figure 6 gives the dependence of electron energy W
on reciprocal radius R~! for the ground internal polaron
state. Except for a narrow interval corresponding to
small R values, the obtained dependence is closely
approximated by the function linear in R,

W= -aask  22p (1)
€ €

where the electron energy Wis in eV, the cluster radius R
is in A; and @ = m/my, is the reduced electron mass.

~2
When R tends to infinity, W tends to —4.43t/€ eV,
coinciding with the polaron energy in a homogeneous
polar medium [4, 5].

Note that dependences of form (11), which relate
the energy of an electron in a cluster to the cluster size,
were also obtained for other models from qualitative
considerations (see [1]).
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Fig. 1. Relation between y; and zg parameters ensuring ful-
fillment of the condition z(Xp) = O in the corresponding
Cauchy problem for (2) at Xp = 10 (see text).
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Fig. 2. The ¢(y,) dependence for the curve shown in Fig. 1.
Fulfillment of the condition @(y,) = 0 provides a solution to
the boundary-value problem given by (2) and (3) at Xg = 10.
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Fig. 3. Electron ground state energy in a cluster IWl as
a function of cluster radius R. Energy is given in ¢V and
radius in A.
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Fig. 4. Total electron energy in a cluster as a function of
cluster radius. Energy is in eV and radius in A.
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Fig. 5. Wave functions obtained from solutions to (2) and 3

forR=4.5¢/ 1l (A); (1) internal electron state and (2) exter-
nal electron state. The vertical line corresponds to cluster

radius R=4.5€ /p1.
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Fig. 6. (1) Dependence of internal electron state energy W

on R™! and (2) its linear approximation. Energy in eV and
radius in A.

COMPARISON WITH EXPERIMENT

Much work has been done on the properties of charged
clusters. Coe et al. [2, 3] summarize experimental data on
the energy of photodetachment of excess electrons from

water and ammonia clusters, (H,0) , where n=2 - 69,

and (NH,),, n =41 - 1100, where n= 41 - 1100.

The experimental data on water clusters with n > 11 are
very accurately described by the relation

Wesps €V ==3.30 + 5.73n713, (12)

Let the cluster radius R and the number of clustered
molecules n be related as R = R.n'?, where R, is the
effective radius of the molecule. Dependences (11) and

(12) coincide for g = 07458, and R, = 2.528 .
The high-frequency and static permittivities of water at
room temperature are €, = 1.77 and g, = 80, respec-
tively. We therefore obtain for the effective permittivity

€ =¢g.£../(gp—¢..) = 1.81. Therefore, theoretical (11) and
experimental (12) dependences coincide for u = 2.44
and R, = 1.40 A (note for comparison that in Newton
[10], 2 somewhat larger R value of 1.48 A was used).

Experimental data on the energy of photodetach-

ment of an electron from ammonia clusters (NH,)

for a wide range of n values, from 41 to 1100, are given
in Lee et al. [3). These data are closely approximated
by the dependence

Wesp, €V =—1.25 + 2.63n7'3, (13)
A comparison of (13) with universal dependence (11)

gives R, = 5.5¢ ! and p = 0.28%". The high-frequency
and static permittivities of liquid ammonia at —33°C are
known to be €, = 1.77 and g, = 22, respectively, whence
£=1.92. Then R, =2.85 A and p1 = 1.04, which are quite
reasonable values.

Let us estimate the critical radii R, at which polaron
states can appear, and the R, radii separating the region
of metastable states from that of stable polaron states
[IKR,) = 0, see Fig. 4]. For water clusters, we obtain
R.=3.03 A and R, = 3.6 A, which gives n, = 11 and
n, = 17. For ammonia, R, = 7.85 A and R, = 9.3 A,
which corresponds to . = 21 and n; = 35. These esti-
mates closely agree with the existing experimental data
on water and ammonia [2, 3].

PROSPECTS FOR FURTHER DEVELOPMENT
OF THE THEORY

Owing to mathematical difficulties, we only consid-
ered spherically symmetrical solutions to equations (1)
and (2). Combined use of the molecular dynamics and
density functional techniques led Barnett ez al. [11] to
conclude that there exists a nonspherically symmetrical
surface state of the electron, in which the major part of
electron density is localized outside the cluster. There is
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good reason to believe that such solutions also exist for
polaron equations. Taking into account optical transi-
tions between symmetrical and nonsymmetrical sur-
face states can be expected to improve quantitative
agreement with experimental data in the region of small
n values. Specifically, it is possible that such solutions
also exist in the supercritical region, where R < R.. This
would shed light on the nature of experimentally
observed weakly bound electrons on water clusters
with n<6.

Note also that the model according to which clusters
are represented by dielectric spheres interacting with
electrons was used in Antoniewicz et al. [12] for calcu-
lating surface electron states and is likely to be applica-
ble to clusters with fairly large radii. Surface-type solu-
tions obtained in this work are only applicable to com-
paratively small clusters (n < 10%). This follows from
the observation that electron energies of surface states
rapidly decrease in magnitude with increasing the
sphere radius. Therefore starting with some definite
sphere size, the frequency of electron oscillations in the
potential well responsible for surface states becomes
lower than the characteristic frequency of oscillations
of dielectric sphere dipole moments. The use of the adi-
abatic approximation for describing such states ceases
to be justified.
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