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Exact spherical-symmetric solutions to polaron equations are found for a cluster. It is 
shown that there are two different types of the solutions, corresponding to two different 
ground states. One of them describes electron localization inside the cluster, while the 
other is for the state in which electron density is mainly distributed outside the cluster. 
There is a critical cluster size below which the localized states are absent. At the critical 
point a bifurcation of solutions takes place. For water clusters the energy of interior 
electron states falls' into the observed range of experimental data. 
PACS: 71.+x, 71.38.+i 
 

1. Introduction 
 

Extended electron states in globular proteins were considered in [1-3]. The use of the simplest 
model of "dielectric cavity" enabled us to explain quantitatively the IR-absorption band for 
metalloproteins in the range of charge transfer transitions [1, 2] and the long-range electron transfer in 
biomacromolecules [3]. 

Here we use the model developed for proteins to consider extended electron states in molecular 
dusters. The main suggestion of our treatment is that the clusters containing even a few molecules, n~10, 
are considered as continuum which can be polarized by an excess electron interacting with the medium. 
In polar media this mechanism form the polaron state, where the electron has no chemical bounds with a 
single molecule. In polar liquids these states can arise without formation of a cavity, where the electron is 
trapped. Thus, polarization interaction does not break the cluster and can be described by the polaron 
model. Another point in favor of the polaron model is that the characteristic dimension of wave function 
for the excess electron can exceed the cluster size (for instance, in a water cluster [4]). 
 

2. Model 
 

Describing of electron states in a cluster, we treat the cluster as continuum. For definiteness sake we 
consider a water cluster in vacuum as volume Ω with dielectric constant ε, confined by surface S. As it 
follows from electrostatics, any charge in vacuum should be attracted to this region. Thus, the electron in 
vacuum is trapped by the region with a higher dielectric constant and forms a bound electron state. 

Equations for the electron in a polar medium with the local dielectric permittivity depending on 
space coordinates take on the form 

 
2

( ) ( ) ( ) ( ) 0,
2 r
h r e r r W r
m

∆ Ψ + Π Ψ + Ψ =                                               (1) 

 
( ) 2( ) ( ) 4 ( ) 0,div r grad r e rε πΠ + Ψ =⎡ ⎤⎣ ⎦                                               (2) 

 
where m and e are the effective mass and charge of the electron, W and Ψ(r) are its energy and 
normalized wave function; ε (r) is the effective dielectric constant, introduced by Pekar, 
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where ε ∞(r) and ε0 (r) are the high-frequency and static dielectric permittivities T, respectively. These 
equations coincide with Pekar's equations for polaron [5] in a homogeneous medium when the effective 



permittivity is a constant. Below, we consider the case when ε is constant in the region Ω, occupied by the 
cluster, and is zero outside it. That is, potential Π(r) in (1) is determined by equations 
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At the surface S 
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and the electron wave function Ψ with its first derivatives are continuous. 
In many cases the water duster presents closely-packed water molecules, and is quasi-spherically 

shaped. In our calculations we conceive the model of the cluster as an uncharged homogeneous sphere of 
radius R with an effective dielectric permittivity ε . In this case the set of differential equations (1) and 
(3)-(5) for a spherically symmetrical solution is rewritten as 
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The corresponding boundary conditions are 
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The set of equations (6)-(9) with normalizing condition 
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Figure 1. Dependence of the energy |W| of ground electron state on the cluster radius R. 

Energy is given in 2ε − µ eV units, and radius in 1µ ε− ⋅Α . 
 



determines electron wave function Ψ, electron energy W, and total energy IF, determined by the 
functional 
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We note that equations (6)-(9) can be derived directly by variation in functional (11) over wave 

function Ψ(R) and potential Π(R) with regard to normalization condition (10). 
 

3. Solutions for the ground state 
 

The set of equations (6)-(9) can be numerically integrated. Here algorithm for solution is similar to 
that presented in [1] and will be published elsewhere. 

Figure 1 shows the dependence of ground state energy |W| on cluster radius R. As it follows from 
the figure, bound electron states are absent in clusters with a dimension less than the critical size 

Rc≈4.091 1µ ε− ⋅Α , where µ=m /m0 and m0 is the free electron mass. If R > Rc, there are two different 
types of ground states. The branch over |W|c in Fig. 1 corresponds to the states in which the electron is 
localized within the duster. The branch below this critical energy corresponds to the "surface" states of 
the 

 
Figure 2. Dependence of the total electron energy on the cluster radius.  

(The same units as in Fig. 1)  
 

electron. For such states the electron is outside the cluster. The point R = Rc is the bifurcation one, 
where branching the solutions takes place. 

Figure 2 presents the dependence of total electron energy IF (according to (11)) on cluster radius R. 
The branch of lower total energy IF corresponds to the bound electron states, while the branch of higher 
IF corresponds to the surface electron states. According to the figure, for cluster with radius R less than 

R1= 4.85 1µ ε− ⋅Α  the positive total energy corresponds to both bound and surface states. Thus, the two 
states are metastable within the interval (Rc, R1). When R > R1, the inner electron localization becomes 
energetically preferable. The figure also shows that the surface states are metastable at any cluster radius. 
Both the surface and the inner states are self-consistent for the electron and the cluster. They coexist and 
are separated by a potential barrier. 

Figure 3 depicts the solutions for inner (1) and outer (2) states near the critical cluster size. Vertical 
line on the figure denotes cluster radius R=4.5 1µ ε− . In this case for solution 1 the probability of the 
electron to be inside the cluster is 0.95 and outside is 0.05, and for solution 2 it is 0.62 and 0.38 
respectively. At critical cluster size R = Rc the two solutions merge, and the probability for the electron to 
be inside the cluster is 0.82, and outside is 0.18. 
 



 

Figure 3. Spherically symmetrical solutions of equations (6)-(9) for R = 4.5 1µ ε− ⋅Α . Curve 1 
is for the inner state, while curve 2 for the outer one, vertical line denotes the cluster radius. 

 
We plot curve W(R -1) in Fig.4, as calculated by solutions for inner electron states in the cluster. But 

for narrow region of small R, the calculated dependence can be easily approximated by a function linear 
in R -1, 
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where W is the electron energy in eV, and R is the cluster radius in angstroms. As R → ∞ ,  
W → - 4.43 2µ ε − , which coincides with the polaron energy in a homogeneous polar medium [6]. 
 

 
 

Figure 4. Dependence of the inner electron state energy W on R -1 (solid line) and its linear 

approximation (dashed line). Energy is given in eV, and inverse radius in units. 1µ ε − −⋅Α 1

 
4. Comparison with experimental data 

 
There is a set of papers devoted to charged clusters. Bowen et al. reviewed in [7, 8] the 

experimental data on photodetachment energy of the electron in water clusters (H2O) n  for a wide range 
of n = 2…69. In this case when n ≥ 11 the energy is well approximated by the linear dependence on n-1/3, 
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We assume that duster size R relates to number of molecules n as R = RS n1/3, where RS is an effective 
cluster radius. If we require that (12) should be equivalent to (13), we receive relation between RS, µ, and 
ε . For water at room temperature the optical dielectric constant is ε∞ = 1.77 and the static dielectric 



constant is ε0 = 80, hence the effective dielectric constant is ( )0 0 1.81.ε ε ε ε ε∞ ∞≡ − ≈  Theoretical 

expression (12) and experimental one (13) coincide when RS = 1.40 Α  and µ = 2.44. We note that 
calculated radius RS is slightly less than the effective radius RS = 1.48 used by Newton [9]. 

Experimental data on photodetachment energy of the electron for ammonia cluster (NH3) n  are 
listed in [8] for a wide range of n = 41…1100. These data are well approximated as 
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In this case, comparing (14) and (12), we get relation RS = 5.5ε -1 and µ = 0.28ε 2. Taking for liquid 
ammonia the optical dielectric constant ε ∞ = 1.77 at T = -33oC and the static dielectric constant ε0 = 22, 

we find 0 1.92ε = , therefore, RS = 2.85  and µ = 1.04. Α
Let us estimate for water and ammonia critical cluster size Rc, at which polaron states form. and R1, 

which separates the metastable and stable polaron states, i.e., when IF(R1) = 0 (see Fig. 2). For water we 

calculate Rc = 3.03  and RΑ 1 = 3.6 , which lead to nΑ c = ll and n1 = 17. In the case of ammonia, we get 

Rc =7.85  and RΑ 1 = 9.3 , for which nΑ c = 21 and n1= 35, respectively. These estimates are in good 
correlation with experimental data for ammonia [7, 8]. 
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