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Abstract - It is found that local heating of proteins in the electron transfer zone can 
significantly affect the rate of the transfer reaction. When an electron is transferred over 5 to 
6Å, local heating can reach tens of degrees, resulting in temperature dependence of the 
reaction rate at helium temperatures. 

 
The problem of electron transfer over a large distance is one of the most important questions in 

molecular biology. It is significant that, in many cases, this transfer proceeds via the tunneling 
mechanism. The temperature dependence of the transfer rate is governed mainly by tunneling across the 
nuclear subsystem of the biomacromolecule. Electron transfer is usually accompanied by large heat 
liberation. Thus, at a photo reactive site in photosynthesis, heat is liberated in the electron-transport chain 
during electron transfer from bacteriochlorophyll to quinine. Exchange reactions of proteins in aqueous 
solutions are also often accompanied by the liberation of heat. Here, it is important that the expressions 
for calculating the electron-transfer rate contain the average equilibrium temperature of the medium T0 
[1,2]. At the same time, it is quite obvious that heat released in the region of electron transfer to a 
localized state produces a local heating of the immediate nuclear surroundings. In this work, we 
investigated the effect of local heating of the medium on the electron transfer rate. 

In considering the local heating process, we used two macro-models that describe heat transfer in a 
three-layer globule. The simplest three-layer-globule model used for description of electron processes in 
proteins [3, 4] is shown in Fig. 1. 

Model 1. This model assumes that a small part of the immediate surroundings of the site where the 
electron is localized is heated to a temperature T* either during the electron transfer process or due to 
relaxation of a photo excited electron. Generally, this heating occurs within a very short time (about a 
femtosecond) with subsequent transfer of the heat to the degrees of freedom of the surrounding medium. 
In hem-containing proteins, the inner region is determined by the size of the hem, and as an estimate, we 
assume that its radius equals R1~3-5 Å. A typical value of the outer radius is R2~10-20 Å. 

We will use the macroscopic approximation for a macromolecule. This approximation makes it 
possible to obtain an analytical solution of the problem, and as a macromolecule contains ~500-1000 
atoms, this approximation is applicable. Thus, for instance, Tesch and Schulten studied cooling a sphere 
of radius R~30Å (a model of a two-layer globule) using both the molecular dynamics method and the 
heat-conduction equation [5]. A comparison shows that the average temperatures found by these methods 
are nearly identical. 

The heat conduction equations for the first and second zones assume the form: 
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The initial conditions and boundary conditions for (1) and (2) that correspond to the assumptions in 

the model are 
 

T1(0, t)< ∞,    T1(r, 0)=T*,    T2(r, 0)=T0,    T2(R2, t)=T0,    T1(R1, t)=T2(R1, t), 
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Here, αi, χi, (where i=1,2) denote the thermal diffusivity (ai=χi / Cpi ρ) and the heat conductivity, 
respectively; Cρi denotes the heat capacity and ρi, is the density. In general, all the thermo-physical 
characteristics vary with temperature [6], and the boundary-value problem (1)-(3) must be solved by the 
grid method using formulas of continuous computations. In this work, we considered the dependence of 
the thermal diffusivity on the temperature averaged over the volume of the zone, iT . We also assumed 
that the character of the ai(Ti) dependence is the same in zones 1 and 2, i.e., that ai = ai (T0) γ (Ti) and, 
similarly, that χi = χi(T0)δ(Ti). With the assumptions made above, an analytical solution of the problem 
can be obtained by employing the operational method. Inasmuch as the solution for zone 1 is only needed 
to determine the interface temperature T1(R1, t) = T2(R1, t), in the following, we only give the solution for 
zone 2: 
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Here, we used the following notations: 
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The value of yn is given by the equation 

 
( ) .01cotcot1 =−++− dyyybybκκ                                                (5) 

 
If κ~1, from (5) it follows that yn = πn/d. The average temperature, 
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is found from the expressions 
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For γ ( 2T ) = 1, the average temperature is given by 
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Equation (9) can also be used as a first approximation, for subsequent correction of the τ (t) dependence at 
 

 
 

 
Fig. 1. Spherical, symmetrical model of a three-layer globule. 

 
variable γ ( 2T ) and, correspondingly, for refining the 2T (t) value. 

When b/(d -1) can be represented as a ratio of two natural numbers, the following sum must be 
added to the solution (4): 
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where n = n0 j, n0 is the smallest of the natural numbers n for the b/(d-1)=n/m ratio mentioned, µ = π n0 /b, 
and β = κ (d-1) + 1. Correspondingly, the following sum will be added to the right-hand side of (6): 
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Model 2. Model 2 is a modified version of Model 1. The heating kinetics can be described without 

assigning the temperature value T* if we introduce a source q f (t) into the right-hand side of (1): 
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The magnitude of q can be estimated from the condition q = hv/V0t0, where ν is the light frequency 

in the absorption band, V0 is the volume of a region of radius R1, and t0 ~ν -1. Function f(t) depends 
strongly on the duration of the action of the source, i.e., on time t0. It can be written in the form of the step 
function: 
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Fig. 2. The ∆T2(r, t) dependences for various values of radial variable r (Model 1): (1) 6, (2) 

7.5, (3) 9, (4) 12 Å. 

 
 

Fig. 3. Average overheating at various values of the outer radius R2: (1) 15, (2) 10, (5) 20 Å. 
 

The solution for temperature T2, as found from (1')-(3) and (10), is 
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where 
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Here, at t ≤ t0, the problem was solved for constant values of Cp, ρ, and a because of the small t0 

value compared with the relaxation time t∞ The average temperature 2T (t > t0) is found from (8) [in 
which t must be replaced by (t - t0) and τ by ∆τ] and the following equation: 
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At ( ) 122 =Tγ , we have, in particular, ∆τ = (t - t0) . If b/(d - 1) = n/m, the following sum must be added 1−
∞t

to the right-hand side of (11): 
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A corresponding sum found from σ2 and (6) is added to the right-hand side of (12). 

The results of calculations carried out using these solutions are presented in Figs. 2-5. In 
calculations, it was assumed that Cp1 ~ Cp2 ~ 1.2 × 103 J/(kg K) (this value is consistent with the heat 
capacity of proteins at T = 300 K [7]), a1 ~ a2 ~ 7 × 10-8 m2/s [5], ρ1~ p2 ~ 103 kg/m3, and, respectively, 
x1~x2~ 0.1 J/(m s K). Temperature T* was estimated with the following considerations: Typical energies 
associated with electron transfer range from one to two eV. Assuming that the energy of an absorbed 
photon is distributed among the N degrees of freedom of a heme group with N = 3Na - 6 [8] (Na is the 
number of atoms in the heme group - Na = 20-40) and using the relation hv = kN(T* - T0)/2, for a 
wavelength λ = 530 nm, we find that the overheating (T*- T0) can be ~ 500 - 1000 K. In the calculations, 
we also assumed that R1 = 3.5 Å, R2 = 15 Å (Figs. 2, 4), and Na = 24.  

Calculations for the macroscopic models show marked local overheating caused by electron transfer 
in biomacromolecules (~ 100-200 K at ∆r ~ 1 Å, and of the order of tens of degrees at ∆r ~ 5 to 6 Å, where 
∆r = r - R1  is the distance from the heme region). The values of the maximum overheating averaged over 
the volume, ( )max2T∆ , were 10-20 K (depending on the magnitude of R2 and the model used). This is 
consistent with the results of Henry et al. [8], in which heating of macromolecules during photo-excitation 
was investigated by the molecular dynamics method. The calculations indicate also that the local 
temperature rise can significantly affect electron transfer for reaction times t ≤ 3-5 ps. Intraglobular 
electron transfer that proceeds immediately after electron relaxation on the donor is such a reaction. 

 
 
 

 
 

Fig. 4. The ∆T2(t) dependences for various values of radius r (Model 2): (7) 6, (2) 
7.5, (3) 9, (4) 12 Å. 

 



 
 

Fig. 5. ∆T2 as a function of time at r =4.5 Å: (1) Model 1, (2) Model 2. 
 

The temperature rise should also be taken into account in evaluating the rates of reactions involving 
electrons that occur immediately after the electron relaxation caused by photoexcitation. The temperature, 
at which the temperature-independent reaction mode is replaced by the activation mode, is about 100 K 
for a tunneling reaction. The importance of allowing for the heating phenomenon investigated in this 
work follows from the fact that the dependence of the electron transfer rate at low temperatures on 
activation is determined precisely by the nuclear subsystem of the zone in which the electron transfer 
occurs. Thus, if the distance between the donor and the acceptor is -4.5 Å and the reaction time is t~ 2 ps, 
the character of the transfer will be of the activation type (in Model 2), even at an equilibrium temperature 
of the medium of T0 ~20 K, because local heating under these conditions is ~80 K. Model 1 yields a 
similar result at t~1 ps. 

The solutions also reveal that, for a diminishing γ(Τ) function, temperature T2 will attain the 
equilibrium value T0 more slowly than at constant thermo-physical characteristics. 

Allowance for the effects of anisotropy of the macroscopic biomacromolecule characteristics, as 
well as of nonlinearity of the macromolecular properties in future calculations proves to be interesting. 
The fundamentally important effects caused by this type of non-linearity may include a delay in 
propagation of the heat packet and other peculiarities. 
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