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We derive nonlinear differential bipolaron equations, which are asymptotically exact in the 
adiabatic limit. Particlelike solutions of these equations correspond to the bipolaron bound state. 
The exact solution yields an ion critical parameter ηc = ε∞ /ε0 =0.31 for which the bipolaron state 
is stable (ε∞ and ε0 are the high-frequency and static dielectric constants). 
 
PACS: 71.10+x, 71.38+i 
 

Intensive study of bipolarons in recent years is not only due to a general theoretical interest but also 
owing to its important applications, such as interpretation of high-temperature superconductivity [1,2]. 
The history of bipolaron investigations is rather dramatic, for a long time calculation errors called 
question the bipolaron existence [3,4]. 

As distinct from the polaron treatment, where asymptotically exact solutions are known in limits of 
both the weak and the strong coupling [5,6], the bipolaron theory has no exact solutions by now. 
Moreover, in the bipolaron case there are no solutions at all for small and intermediate coupling constants 
a. According to [7] the bound bipolaron state (BBS) is possible only at sufficiently large α >7.2. In the 
adiabatic limit both the electrons are believed to move in the same potential well induced by their fast 
oscillations. Therefore, interaction of the electrons of polarization φ (r1, r2) takes the form 

 
φ (r1, r2) = F(r1)+ F(r2).                                                          (1) 

 
This form is not translation-invariant and corresponds to a phenomenological approach where the 

potential well is assumed to be localized. 
In this paper we develop a translation-invariant bipolaron theory based on the Bogolubov-Tyablikov 

adiabatic method [8,9]. According to our treatment we can separate the bipolaron motion in the adiabatic 
limit. The relative electron coordinates describe fast oscillations of electrons in the potential well, such 
that 

φ (r1, r2) = φ (r1-r2).                                                             (2) 
 

Coordinates of the center of mass describe slow motion of electrons. In this case the polarization 
potential well is not localized and follows adia-batically the center of mass of electrons. Hence, 
interaction (2) is translation-invariant. 

The results of this approach reveal new properties of bipolarons. In the majority of ionic crystals, 
where bipolaron states are possible, the electron-phonon coupling is weak or intermediate for a single 
polaron and strong for the BBS. Critical electron-phonon coupling constants of bipolaron stability are 
approximately 3 times as small as the corresponding constants given by variational estimates. 

Another important result is that the exact solution yields the ion coupling critical parameter 
η=ε∞/ε0= 0.31, where ε∞ and ε0 are the high-frequency and static dielectric constants of an ionic crystal. 
According to variational estimates this condition is much more rigid, η = 0.14 [3,4], and restricts 
drastically the class of crystals where bipolarons can exist. In the adiabatic limit the best variational 
estimates of bipolaron energy are also shown to correspond exactly to the phenomenological theory. 

The results of three-dimensional bipolaron evaluations are also applied to the two-dimensional 
bipolaron. We find the energy of 2D-bipolaron and the critical electron-phonon coupling constants of 2D-
bipolaron stability. 
 

1. Bipolaron phenomenological theory 
 

In phenomenological model the mean Coulomb field induced by two excess electrons is assumed to 



cause the local medium polarization 
επ ~4DP = ,                                                                (3) 

 
where 1
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and Ψ(r1, r2) is the electron wave function. As a result the bipolaron energy is determined bv the 
functional 
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or, invoking (4), it can be rewritten as 
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Thus, the phenomenological model yields an expression, where the interaction between particles, 

induced by the polarization field, takes on the form 
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Functional (6) suggests an important conclusion. Variation of it over ψ gives a Schrodinger 
equation whose efficient potential is of the Coulomb form at sufficiently large r1-r2. The BBS exists only 
if the potential is attractive or 
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The stability condition for BBS differs from (8) and may be written as 
 

E2 - 2E1 < 0 ,                                                                        (9) 
where 
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is the total energy functional for a single polaron and D1 is taken from (4) at substitution of 2e for e. As 
noted above, the best estimates resulting from (6)-(10) yield the condition of bipolaron stability [3,4] as 
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2. Translation-invariant adiabatic theory 

 
The Pekar-Frohlich Hamiltonian for two electrons interacting with a phonon field has the form  



( )
( ) ( ){ } ( ) ( ){ },

22
02020101

212

2

1

2

∑∑

∑

+−−∗−−−∗−

+

++++

+−++∆−∆−=

f
f

rrfi
ff

rrfi
f

f

rrfi
ff

rrfi
f

f
fffrr

becbececbec

rrUbb
mm

H ω===

         (12) 

 
,~21 Vfec ff εωπ−=                                                      (13) 

 
where r1 and r2 are the coordinates of the first and the second electrons, respectively; ωf are the phonon 
frequencies; and r0 is an arbitrary reference point. It is generally assumed that r0 = 0, and in this case 
Hamiltonian (12) is initial for the bipolaron theory. 

Degeneracy of (12) with respect to rc plays a dominant role in the translation-invariant theory. We 
introduce coordinates 
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and complex coordinates of the field g/ by 
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where ε is a small parameter. As a result we present Hamiltonian (12) as 
 

( ) ( ) ( )

,
22

1

4
4

22
0

ff f
f

f
fff

f
f

rRfi
ffrR

qq
qq

rUqerA
mm

H

∂
∂

∂
∂

−+

+++∆−∆−=

∑∑

∑

−
−

−

νεν

ρ==

                          (16) 

 

( ) ,
2

cos2 rfrf =ρ                                                               (17) 

 
,2 ff cA =                                                                   (18) 

 
.2

ff νεω ==                                                                     (19) 
 

According to [8,9] the radius-vector R of the bipolaron center of mass can be written as a sum 
 

R = r0 + q,                                                                  (20) 
 

where r0 is the fluctuating part of the motion of center of mass and q is its translation-invariant 
part.  We can replace qf  by new complex field coordinates Qf using 
 

qf = (Uf  +ε Qf)e-i(fq).                                                       (21) 
 

These new coordinates must meet three additional conditions 
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where υf are the complex numbers satisfying the relations of reality υ-f = υf, which are chosen so that the 
orthogonality conditions might be fulfilled 
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where f α and f β are the components of vector f. Relations (20)-(23) are a canonical Bogolubov-Tyablikov 
transform in the polaron theory. Replacing in (16) variables R and qf by new variables r0, q, and Qf and 
using (22), we rewrite Hamiltonian (16) as 
 

H = H0 + εH1+ε 2H2 + …,                                                           (24) 
 

The variable q appears in the transformed Hamiltonian only via the canonically conjugate 
momentum qiP ∂∂−= =ˆ , 
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which is the total momentum of the system (electrons plus the phonon field). Then, wave function of the 
system can be presented by 
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Accordingly, the terms of expansion (24) do not contain variable 9 and are given by 
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In (28) and (29) vector P of the total momentum is replaced by the vector I = ε 2P. To consider the 
momentum dependence in zero approximation, I is assumed to be of the zero order. The form 〈H1〉, linear 
with respect to Qf, Pf', should be equal to zero 
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and taking the coefficients at Qf, Pf' equal to zero, we express Uf and Sf as 
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where the vector e is given by the condition 
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It follows from (28)-(34) that coordinates r0 and r are separated in the zero approximation, and the 
Schrodinger equation takes on the form 
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where c = υ/ε, υ s the mean velocity of bipolaron rectilinear motion. Total energy E is 
 

( ) ,
2
1 2

2
0

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

++= ∑
f

f
f

f v
cfvUWE                                                 (37) 

 

( )
( ) ( ) .32

022 rdrr
fcv

vA
U f

f

ff
f ϕρ∫ ∗

∗

−
−=                                             (38) 

 
 

Using the expansion of these equations over υ, we can express bipolaron effective mass M* in the 
slow-velocity limit 
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Equations (35)-(40) completely determine the problem of slow bipolaron motion. They will be 

solved in the next section.  
 

3.    Solutions to bipolaron equations 
 

We consider the ion crystal where ωf = ω is the frequency of longitudinal optical phonons, and the 
interaction U(r) between two electrons corresponds to the Coulomb repulsion screened by high-frequency 
dielectric permittivity, 
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Using the relation 
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and expressions (13) and (18) for Af, we can present integro-differential equations (35)-(36) as a set of 
two differential equations 
 

.0~
32

,0

2
0

00

2

0

2

=+Π∆

=−Π+−∆
∞

ϕ
ε
π

ϕϕ
ε

ϕ

e

Wee
m
=

                                             (43) 

 
Then, using in (43) dimensionless variables 
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we get in the spherically symmetric case the following system of nonlinear equations 
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subject to the boundary conditions where 
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It follows that the solutions to (43) depend on a single parameter κ . Expression for the bipolaron 

energy is given by the normalizing condition 
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and takes on the form 
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Accordingly, the total energy (37) is 
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Finally, using the definition of bipolaron radius 
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and relations (44), we present it as 
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Figure 1 shows particlelike solutions of boundary problem (45)-(46) for various parameters κ. It is 

evident that the probability of the two electrons occurring at the same spatial point decreases as parameter 
κ grows. With growing κ the maximum in electron density distribution shifts to the right and at critical 
value κc = 0.5 goes to infinity. It follows from the asymptotic of potential (43) at sufficiently large r that 
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Localized solution to (43) exists only if the right-hand side of (56) is positive, i.e., κ < 0.5. 

Accordingly for ion coupling parameter η= ε∞/ε0 which relates to κ as 
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we get ηc = 0.75, which is considerably greater than that resulting from the phenomenological theory  
by (8). 

 
Figure 1. Particlelike solutions of equation (45) for different parameter κ: κ = 0.18 (α),  

0.3 (6), and 0.36 (c). 
 



4.    Bipolaron characteristics for some particular crystals 
 

Table 1 lists data on quantities T, Γ, R, Q, and 
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which can be used to calculate energies (50), total energies (51), and bipolaron radii (54) for parameter  
η < ηc· Critical parameter ηc of the 
 

Table 1. Integrals  xdxMxdxRxdxQxdxxdxT 2

0

43

0

2

0

2

0 0

2222 ;;;; ∫∫∫∫ ∫
∞∞∞∞ ∞

Υ=Υ=Υ=Υ=ΓΥ′=

for various parameters η 
 

    η      Γ     T       R     Q     M  

0  4.79  1.22 13.14 2.21   1.31 
0.053 4.88 1.23 13.50 2.22 1.31 
0.094 4.97 1.23 13.87 2.24 1.32 
0.132 5.06 1.23 14.30 2.25 1.32 
0.166 5.16 1.23 14.73 2.26 1.33 
0.199 5.26 1.23 15.18 2.27 1.33 
0.228 5.37 1.23 15.67 2.28 1.33 
0.256 5.48 1.23 16.19 2.30 1.34 
0.282 5.60 1.23 16.74 2.30 1.34 
0.305 5.71 1.24 17.33 2.32 1.34 
0.317 5.78 1.24 17.64 2.32 1.34 

 
BBS stability is determined from the energetic advantage of the bipolaron state with respect to its decay 
into two independent polaron states. 
 

,2 polEE ≤                                                                    (59) 
 
where Epol is the energy of a single polaron state [5] in the strong-coupling limit 
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It follows from (51), (60), and Table 1 that inequality (59) is valid for η < ηc where ηC = 0.31. 
Table 2 lists data on crystals satisfying the condition η < ηc, and the calculated radius. en-ergies, 

and effective masses of bipolarons. When no experimental data on the electron effective mass m are 
available, we present results depending only on the ratio m/m0, where m0 is the free electron mass. 

 
5.    Critical coupling constants for bipolaron 

 
Condition of the adiabatically-strong coupling is ω>>=W , i.e., the frequency of electron oscillations 
in the polaron well should be much greater than the frequency of lattice vibrations. It follows from Table 
2 that this condition is met for reasonable electron effective mass. Thus, while a single polaron meets the 
condition of  
 



Table 2. Energy W, total energy E, radius (r) and effective bipolaron mass M*. 
 

 
 

a Experimental parameters are taken from [1O]. 
b Effective mass for LiF is taken from [11]. 

 
Table 3. Critical electron-phonon coupling constants αc for different parameters η. 

 
η  0  0.053  0.094  0.132 0.166 0.199 0.228 0.256 0.282  0.305  0.317  
αc  1.54  1.64  1.74  1.85  1.97  2.10  2.25  2.40  2.58  2.77  2.90  

 
weak or intermediate coupling, a bipolaron follows the strong coupling condition. This enables us to 
evaluate critical electron-phonon coupling constants ac when the BBS is possible. For this purpose we 
present bipolaron energy (51) as 
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The condition of energetic advantage of the BBS has the form 
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which leads to the following requirement of the bipolaron formation, 
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Using T, Γ, and Q listed in Table 1 and inequality (63), we can get the critical coupling constants 

presented in Table 3. 
Note that critical coupling constants given by the exact solution to bipolaron equations are much 

smaller than those evaluated by trial variational functions. Thus, according to [11], the critical constants 
are αc ≈ 5.4 for η = 0 and αc ≈ 7.2 for η = 0.1, i.e., they appear to be three times as large as those given by 
exact solution to the bipolaron problem. 



6.    Discussion 
 

Our translation-invariant bipolaron theory yields results qualitatively different from those given by 
the standard adiabatic method. On the whole the situation looks as follows. In the bipolaron formation the 
electrons localize in a deep potential well with the electron excitation energy W ~ 1 eV. This energy 
remains the same up to the critical parameter ηc = 0.31 when the BBS decays into independent polaron 
states. Up to critical values η = ηC  the frequency of electron oscillations in the bipolaron potential well 
greatly exceeds the frequency of lattice vibrations, and we can use the adiabatic approximation. The 
criterion of adiabaticity fails only for crystals with very small electron-phonon coupling constants, such as 
PbSe (α = 0.215) and PbS (α = 0.317), where η < ηc, and bipolaron states are conceptually possible. 

Bipolaron characteristics are best presented in crystals TiBr and TlCl, where continual 
approximations are fulfilled well, the radii of states are 20 Å and 16 Å respectively. The adiabaticity 
condition is also met with a great safety, despite a relatively small constant α ≈ 2.5. 

We emphasize that these crystals satisfy not only the stability criterion given by (59) and (60), but 
also condition (63) ωα =2−<E , since the bipolaron decays into weakly or intermediately coupled 
polarons. The stability criterion also remains valid in these crystals, if we use data on polaron energy 
improved by intermediate coupling results. In the range α = 3-5 the polaron energy [ 12 ] is 
approximately 10% lower than ωα =− . 

It is significant that in all the cases listed in Table 2 there is a great difference between electron 
energy W and total energy E of bipolaron. Absolute electron energy is approximately 5 times as great as 
the total energy, while for a single strongly coupled polaron this ratio is 3. This distinction can lead, 
particularly, to a great difference between the energies of photo-and thennodissociation. 

In some crystals the criterion of stable bipolaron is at a bound of accuracy. Thus, in RbF the 
bipolaron is stable at room temperature (ε0 = 6.48; η = 0.3 < ηc), and unstable at helium temperature (ε0 = 
5.99; η = 0.32 > ηc ). Therefore, in Rbf the cooling from room temperature to helium one leads to the 
bipolaron dissociation. This phenomenon could be observed in absorption spectra, changes in mobility 
and cyclotron frequency, etc. 

In conclusion the author wishes to thank R. Gabdullin for numerical calculation of equations (45) 
and (46). 
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