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A translation-invariant adiabatic theory is constructed for the bipolaron. It is shown that motions in the
bipolaron are divided: the relative electron coordinates describe fast electron oscillations in the induced polari-
zation well and the center of mass coordinates represent slow electron movement followed by polarization.
Nonlinear differential bipolaron equations are derived which are asymptotically exact in the adiabatic limit.
Particlelike solutions of these equations correspond to the bipolaron bound state. The exact solution yields the
value of the ion critical parametgr= 0.31 for which the bipolaron state is stable, winere_ /g, so anc_, €,
are high-frequency and static dielectric permittivities. The energy, the total energy, the effective mass, the
radius, and the critical values of the electron-phonon coupling constants are calculated for the bipolaron. The
results obtained are generalized to the case of two-dimensional bipolarons.

. INTRODUCTION

Considerable study has been given to bipolarons in recent years not only due to general theoreti-
cal interest in the problem but also owing to important applications, such as an interpretation of high-
temperature superconductivity?

The history of investigations into the bipolaron theory is rather dramatic: Over a long period of
time calculation errors have been calling into question the very possibility of the existence of bipolarons.
(For details see Refs. 3,4.)

As distinct from polaron theory, where asymptotically exact solutions are known in both the
limit of weak coupling and the limit of strong couplingbipolaron theory has no exact solutions for
now. What is more the bipolaron lacks solutions for small and intermediate values of the coupling
constant whatsoever. According to Ref. 7 the bound bipolaron state is possible only at sufficiently
large coupling constants > 7.2. It is thought that in the adiabatic limit both electrons move in a
common polaron potential well, induced by their oscillations in this well. For this reason the interac-
tion of electrons with polarizatiop(r,, r)) is presented as

@ (ry, r,) =F()+E(r,). (1)

This form is not translationally invariant and corresponds to the phenomenological approach where
the potential polarization well is assumed to be spatially fixed.

In this paper a consistent adiabatic translationally invariant bipolaron theory is developed, based
on Bogolubov-Tyablikov adiabatic thedryAccording to the approach presented the bipolaron move-
ments are divided in the adiabatic limit. The relative electron coordinates describe fast oscillations of
electrons in the potential well, which takes the form of their potential interaction

(p(rl ) r2) = (p(rl - rz) . (2)

The center of mass coordinates describe the slow motion of the electrons. It is suggested that the
potential polarization well is not spatially fixed and follows adiabatically the movement of the elec-
tron center of mass. Therefore the interaction Eq. (2) is automatically translation invariant.

The results obtained with this approach allow a glance at the nature of bipolarons. In the major-
ity of ionic crystals where bipolaron states are possible and the electron-phonon coupling for one
polaron is weak or intermediate, for the bipolaron this coupling is strong. Critical values of electron-
phonon coupling at which bipolaron states are stable turn out to be approximately 3 times as small as
the corresponding values obtained from variation estimates.

Another important result is in the fact that the exact solution yields the value of the ion coupling
critical parameten =0.31, where) =¢_/¢; €_, €, are high-frequency and static dielectric permittivities
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of the ionic crystal. According to variation estimates this criterion is much morenrigid.14 (in
Refs. 3,4) and restricts drastically the class of crystals where the bipolarons can exist. It is also shown
that the best variation estimates of the bipolaron energy in the adiabatic limit correspond exactly to the
phenomenological approach.

The results, obtained for the three-dimensional polaron, are also applied to the two-dimensional
(2D) bipolaron. The energy of the 2D bipolaron is found and the critical values of the electron-phonon
coupling constants at which the 2D bipolaron is stable are derived.

Il. BIPOLARON PHENOMENOLOGICAL THEORY

In phenomenological description of bipolaron states one proceeds from the fact that the mean
Coulomb field induced by two excess electrons locally polarizes the medium and polafzegion
equal to
D 3
ATE (3)

where e =¢.* —¢;!, D is the electron induction,

(4)

andy(r,, r,) is the electron wave function. As a result the bipolaron energy is determined by the
functional

D——2eJ'|Lpr r] |)drdr

2 2 2 2 1
E Lyl = Zh—mﬂDHLplzd‘°’rld~°’r2 + g—mﬂD r2L|J|2d3I’1d3I‘2 + S—mf—lrllqil . d3rd®r, - ﬁjDzd?’r (5)

or, by Eq. (4) it can be rewritten as

Ez[w]:gl_:nﬂmﬁwlzdsrldsrz +%J’|Drzlp|2d3r1d3rz_ g I l' rx |LU "’I’X d®r'd®"d?® I‘d r,+:

=

€W g0
+8w I|rl—r2|d " (6)

So the phenomenological approach yields an expression where the interaction between particles in-
duced by the polarization field takes the form

Jw(r rllw(r’rl

orr)=-= I d3r'd?r”, @)

The form of Eq. (6) dlrectly suggests an important conclusion. Variation of Eq. (6) opeo-
duces a Sclkidinger equation, whose efficient potential takes the Coulomb form at sufficiently large
r,- r,. The bound state exists only if the potential is attractive which is given by the condition

e le,<0,5. (8)
The stability condition of bipolaron states differs from Eq. (8) and may be written as
E,—2E <0, (9)
where
_ hz 2 43, _ 1 243

E, is the total energy functional for one polaron;i®obtained from Eq. (4) by replacing Rye. As
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noted above, the best estimates, resulting from Egs. (6) — (10) suggest the following criterion of stabil-
ity of bipolaron state3?

e, le,< 0,14. (11)
1. TRANSLATION-INVARIANT ADIABATIC THEORY

The Pekar-Ryhlich Hamiltonian for two electrons in teracting with a phonon field is of the form

2 . .
H -—;l—mAl ——A + Zhwfbﬂb +U r—r |) Z{cfe'f(ﬁ"o)bf +cEe"f(’1‘fo>bE}
+ Z{cf g+ c?e“f(fz‘fo)bﬂ} : (12)
c, =ef 12w, [V, (13)

wherer, andr, are the coordinates of the first and the second electron, respedativaig. phonon
frequencies and is the arbitrary reference point. Itis generally assumed thé@tand in this case the
Hamiltonian, Eq. (12), is basic in the bipolaron theory.

The degeneracy of the Hamiltonian, Eq. (12), with respegtitas a dominant role in the devel-
opment of translation-invariant bipolaron theory. Turning to the center of mass coordinates of two
electrong andR by the formulas

r=r-r, R=(r+r)?2, (14)
and passing on to complex coordinates of the figling the formulas
e, +b7) 0 Cifor-b_,)

i S )

wheree is a small parameter, we can present the Hamiltonian, Eq. (12), in the form

H =—j—;A —h_A +ZAfpf(r)eif(F<—ro>qf +U(r)+%zqufq_f _%va%%g_’ .
- f f

p, (r) = 2cos fr 2, -

b= (18)

ho, =€%V,, a9)

According to Refs. 8,9 the radius vector of the bipolaron center of Rneess be written as a sum
R=r,+q, (20)

wherer  acts as the fuctuating part of the center of mass coordinategsatine translation-invariant
part. We can replaag by new complex field coordinaté€®, using the formulas

G = (U, +eQ)e'™, (21)
These new coordinates must be subject to the three additional conditions
O —
vafo =0 (22)

wherey, are the complex numbers, satisfying the relations of reglityv,’, which are chosen so that
the orthogonality conditions might be fulfilled,

Z ff*fﬁv?Uf :5as, (23)

wheref 9, f# are the components of the vector
Relations (20) — (23) present a canonical Bogolubov-Tyablikov transformation in the polaron
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theory. Turning in Eqg. (16) from the variablgsq, to the new variables, , g, Q, and observing
condition (22) we rewrite the Hamiltonian, Eq. (16), as

H=H,+eH +&H,+... (24)
Taking into account that the varialj@ppears in the transformed Hamiltonian only in the form of
canonically conjugate impulslé =-ihd/0q,

|hi = —Ih— thqf

(25)

which is the full impulse of the Whole system (electrons plus the phonon field), the wave function of
the system can be presented as

qJ e|perfoQf/€q(r’ o ) (26)
=@, +eQ +&@Q,+... . (27)
Accordingly the terms of expansion, Eq. (24), do not contain the vagalnld take the form
h? " 2
Ho=~gmB Tl * 2 AU, zZ oo +ZZV S, +'—('f* +U(), (28

-3 %E-i%(lf i+ gﬁfpf(r)wfufﬂ—gsf SO R -1 e R g

P -voy (KW, P, p =i 9
z )J y f an

In Egs. (28) and (29) the vector of the total imptHde replaced by the vector= €2P. To obtain the
impulse dependence in zero approximatlas,assumed to be of zero order.
Taking into account that the forfH [ which is linear with respect @Q,, Pf turns to zero,

= [06(r)H.,(r)ar =0, (30)
(po:¢o(r)9(ro’Q1""*Qf’---’QN), (31)

and taking the coefficients @}, P'f equal to zero we expregsandS as follows:
2 D .
Afj.lq)o(rx P+ (r)dsr +v Up _% # If % 79 ng )VD =0 (32)
v .
v, 57 ==L (i)E= iU (1), @)

where the vector c is given by the condition
2 fYiS=0 (34)

It follows from Egs. (28) — (34) that the coordinatgandr divide and in the zero approxima-
tion the Schroédinger equation takes the form

ErﬁA +H -W, %) (35)
A d?
()= vilA[ [p (Yoo () r (36)

T V - (Cf )2 f ’
wherec = v/e andv is the mean velocity of the bipolaron forward movement. The total ekasgy
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(37)

E:Wo+%Z|Uf|2§f Jr(fC2
f

AfDVf 0 23
U, = -mjpf(r)l%(r] d’r (38)

Using the expansions infrom these equations we can express the bipolaron effectiveMnasshe
limit of small velocities,
E=E+M"Vv¥2+ ... , (39)

where

(o, (Yoo )=r|

Equations (35) — (40) completely determine the problem of the slow bipolaron motion. They will be
solved in the next section.

IV. SOLUTIONS TO BIPOLARON EQUATIONS

We consider the ion crystaj = w, wherewis the frequency of longitudinal optical phonons, and
the interaction between two electrdd§) corresponds to the Coulomb repulsion, screened by high-
frequency dielectric permittivity,

MD:_&Z

(40)

2

_ €
V)= (41)
Using the relation
1 —|fr
e 2T[ZI 77 d (42)

and expressions (13) and (18) Agiwe can present integro-differential equations (35) and (36) as a
system of two differential equations,

32ne

h? e’ _
EA% —ng)r—O+eH¢O—W¢O—O CAN + |¢ J*=0. (43)
Turning in Eq. (43) to dimensionless variables
= h
Wl [me Wy = X
r)=—,—Y(xJ, MN{r)=—2(x
0,0)=5 2. )= 209, = T, (a4)
we get in the spherically symmetric case the following system of nonlinear equations:
Y'+EY’—ad'1+ZY—Y:O,Z"+EZ’+Y2:0, (45)
X X X
which satisfies the boundary conditions
Z'(0) = Y(e0) = Z(0) =0, 2Y'(0) - 2el'Y(0)=0, (46)
where
—(Cv2y2
I‘—IOY x2dx , (47)
_ €
T8 (48)

It follows that the solutions of Eq. (43) depend on a single paraeeter
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The expression for the bipolaron energy is given by the normalizing condition

[log(r)der=1 (49)
and takes the form
64e’m
ST 0)
Accordingly the total energy is, by Eq. (37), written as
T-T-2Qr
E = ——
W——— (51)
where
T =J::°Y’2x2dx, Q :fYZde. (52)
Finally, using the formula
(r) :I|¢(r]2rd 3 (53)
and relations Eq. (44) we present the bipolaron radiless
_ e
(1) =5z-R. (54)
R= I: Y 2x3dx. (55)

Figure 1 shows particlelike solutions of the boundary problem, Egs. (45) and (46), for several
values of the parameter &e. It is evident from the figure that the occurrence of the electrons in one and
the same spatial point decreases as the parameter ae grows. With growing parameter ae the maximum ir
the electron density distribution shifts to the right and at the critical @g|we0.5 goes to infinity. It
follows from the fact that at sufficiently largéhe asymptotic of the potential appearing in Eq. (43) is
of the form

2

N0~

gl - @

ol &

1
e - (56)
A localized solution, Eg. (43), exists only on condition that the right-hand side of Eq. (56) is
positive, i.e.ze< 0.5. Accordingly for the ion coupling parameter¢_/¢, which relates tee as
8ee—1 £
= (57)

we getn, = 0.75, which is considerably greater than the corresponding value, Eq. (8), resulting from
the phenomenological theory.

V. CALCULATION OF BIPOLARON CHARACTERISTICS FOR SOME
PARTICULAR CRYSTALS

Table I lists numerical values for the quantifie§, R, Q, andM,
MzﬁYW%x (58)

which can be used to calculate the energies, Eq. (50), total energies, Eq. (51), and the bipolaron radius,
Eq. (54), for various values of the parametgsuch that) < ). The critical value of the parametegr
at which the bipolaron state is stable, is determined from the condition of energetic advantage of the
bipolaron state relative to its dissociation into two separate polaron states,

E<2E (59)

pol ?
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whereEpolis the energy of a single-polaron state, which in the limit of strong coupling is given by

2e'm

pol — _W , I,=3,5052, (60)

It follows from Egs. (51) and (60) and Table I that inequality (59) is fulfilledyfem _, where
n.=0.31.

Table Il lists the parameter values for crystals, which satisfy the congitan , and presents
the calculated values of radius energies and effective masses of bipolarons. When the experimental
value of the electron effective massis lacking, we show the results which depend only on the
relationm/my,, wherem is the mass of a free electron in vacuum.

TABLE I. The values of integrals
T :fY'zxzdx, r =J':Y2x2dx, Q :szxdx, R:I:Y2x3dx, M :J’:Y“xzdx,

for different values of the parametgr

n I T R Q M

0 479 122 1314 221 131
0.053 488 123 1350 222 131
0.094 497 123 1387 224 132
0.132 5.06 123 1430 225 132
0.166 5.16 123 1473 226 1.33
0.199 526 1.23 1518 227 1.33
0.228 5.37 123 1567 228 1.33
0.256 548 123 1619 230 134
0.282 560 123 16.74 230 1.34
0305 571 124 1733 232 134
0317 578 124 1764 232 134

FIG. 1. Particlelike solutions of Eq. (45) for different values of the paraweeeter
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VI. CRITICAL COUPLING CONSTANTS FOR THE BIPOLARON

The condition of adiabatically strong coupling consists in the requiremerk\tHa‘t >>Ww;i.e.,
the frequency of electron oscillations in a polaron well significantly exceeds the frequency of lattice
oscillations. Table Il suggests that in the case of bipolarons this condition is fulfilled for reasonable
values of the electron effective mass. Therefore while for a single polaron the condition of weak or
intermediate coupling is fulfilled, the bipolaron comply with the condition of strong coupling. This
allows one to estimate the critical values of electron density constaattsvhich the bipolaron state
Is possible. For this purpose we present the bipolaron energy, Eq. (51), in the form

£ ogal -l +aQr

= hw (61)
e | m
:% pTve (62)
From the above consideration the condition of advantage of the bipolaron state takes the form
|E|> 2071w, (63)
which leads to the following condition of the existence of the bipolaron state:
r3
a>a0:32|T—|‘+aeQI’|' (64)

Using the values of, I', Q, listed in Table | and inequality (63) we can get the values of the critical
coupling constants, presented in Table III.

Note that the values of the critical coupling constants, obtained on the basis of the exact solution
to the bipolaron equations, are much less than the values obtained with the help of probe variation
functions. Thus, according to Ref. 11 the critical valugyferO isa _[15.4 and for) = 0.1 itisa _[17.2,
which are more than 3 times as great as the values obtained on the basis of the exact solution of the
bipolaron problem.

TABLE Il. Summary of the data to energy (W), total energy E), radius (r),
and effective bipolaron massN 7).

CrystaP €_ g, hwEV) mm a W|(eV) |E|(eV) IOA) M*/m
LiF® 1,93 9,04 0,082 0,78 4,63 837 1,66 2,93 52
Li-Cl 2,79 11,86 0,052 4,49mlm,  4,6mm; 0,93m, 3,7m/m 40,3(r/m,)?
Li-Br 3,222 13,23 0,079 528m/m, 3,20m, 0,62mm, 4,5m/m 71,7¢m,)>
Li-H 36 129 0,14 1,9§m/m, 22mm 0420Wm 55m/m 1,3(mm)>
TI-Br 534 304 0014 0315 2,55 0,49 0,1 20 4,78
T-C1 4,76 236 002 0,33 2,56 0,71 0,15 16,2 5,62
TH 68 216 0012 34m/m; 0540Wm 0,Imm 11,3n/m 0,6(m/m)>
Cs-F 217 8,08 0,03 74fm/m;  6,30m,  1,20m, 3,3m/m 222(/m)>
Rb-F 1,94 6,48 0,036 70fmm,  7mm 1,257Wm, 3m/m 186(/m,)>
SITio, 5 320  0,0153 1,8¢m/m, 2,9mm 0,67m, 4,4m/m 1,98(n/m,)

aThe experimental data of the parameters have been taken from Ref. 10.
bThe value of the effective mass for Li-F has been taken from Ref. 11.
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TABLE lII. Critical values of electron-phonon coupling constanta_ for
different values of the parameterq.

n O 0,053 0094 0132 0,166 0,199 0,228 0,256 0,282 0,305 0,307

a 154 1,64 1,74 185 1,97 2,10 2,25 2,40 2,58 2,77 2,90

c

VIl. COMPARISON WITH V ARIATION ESTIMATES

Variation calculations of the bipolaron coupling energy are based on minimization of the full
energy, which is obtained by averaging of the Hamiltonian, Eq. (12), using the probe wave functions

W) = w(r,.r,)50)
, 65
S= |_| eXp(Cbef -G b?)_ e

Varying the obtained free energy functional oyér_, r,) we have a Schrodinger equation of the form

(P2 P2 0
% + Z_?n +U qu - I’2|) + q(rl’ r )%}p(rl’ rz) = WL|J(F1,I‘2) , (66)
where the potential of interaction of two electrons, caused by the induced polarization, is
— 22 |h | [p efrl +e|fr2 +CC] (67)
— EId 3rld 3r2 (eifr1 + eifrz )qJ(rl’ r2 ]2 . (68)

It follows from Eq. (67) thap(r,,r) is written asp(r, ,r,) = Hr,) + F(r,) and, as was noted in the
Introduction, cannot be presented in the fgm- r,). Substitution of Eq. (68) into Eq. (67) leads to
Schrodinger equation (66) which is obtained by variation of the functional (6)lovejr,). So vari-
ation estimates with the probe wave function of Eq. (65) yield the same results as that within the
phenomenological approach (Sec. II).

VIIl. RESULTS FOR THE 2D BIPOLARONS

Some of the results obtained can be easily extended to the two-dimensional case. The bipolaron
problem in the two-dimensional formulation has come into importance in the context of the discovery of
high-temperature superconductivity. The simplest model used for a description of polarons in D-dimen-
sional space is given by Eq. (12) wafhreplaced byc, ,*?

(] D-1 —17?
cf,D:th/‘f%J%(Zﬁ) r%@ . (69)

It is assumed that in the two-dimensional layer the physical parameters (frequencies, dielectric con-
stants, effective masses) are the same as in space, and the wave-vector depecjdgiscehnisen

from the condition that the electron-polarization interaction be of the Coulomb farfth&/numeri-

cal factor in Eq. (69) is chosen from the condition thaf correspond te, for D = 3:

e’ mw
o, =0 =

3D g\ 2n

(70)

To estimate the bipolaron coupling energy in the two-dimensional case we can use the expres-
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sion relating the results of the two- to the three-dimensionaltase,

E2Db|p(a2D’ 2D -3 3Db|pB¥a2D Z 20[ (71)

The bipolaron coupling energy will be

2
2D b|p 3 él%% 3D bip » (72)
whereEgD'bip is the bipolaron energy in the three-dimensional case, Eq. (51). Accordigiyze,

N,, =N4- BY EQ. (71) in the two-dimensional case the critical value of the electron-phonon coupling
constant is written as

3
Q¢ 2p :Eacao , (73)

wherea_ . are listed in Table II.
Note that relation (71) is not exact and in Ref. 12 was obtained in Gaussian approximation. So

the results, Egs. (72) and (73), can be considered as quantitative estimates for the bipolaron in the two-
dimensional case.

IX. DISCUSSION OF RESULTS

The translation-invariant bipolaron theory developed in this paper leads to qualitative dissimilarity
from the results obtained within the general adiabatic scheme. On the whole the picture is as follows. In
formation of the bipolaron state the electrons are localized in a deep potential well with the electron

excitation energﬁN| of the order of 1 eV. This energy remains almost unchangedyp 1,31, where
the bipolaron state breaks into separate polaron states. So, until the critical value becomée

bipolaron state can be described within the adiabatic approximation which holds Mbké fior> W,

In other words, up to the critical values of the paramegtéhre frequency of electron oscillations in a
bipolaron potential well significantly exceeds the frequency of the lattice oscillations. Only for crys-
tals with very small electron-phonon coupling constants PlxSe0(215) and Pb-So(= 0,317), in
which n <n_—.e., the bipolaron states are principally possible — is the adiabatic criterion not
fulfilled.

The best idea of bipolaron characteristics is given by the crystals TI-Br and TI-C1, where the con-
tinuum approximations are fulfilled well and the radiuses are 20 and 16 A, respectively. The adiabatic
condition is also met with good allowance despite the considerably small coupling @ihs2sihit

It is important to stress that these crystals obey not only the stability criterion, given by Egs. (59)
and (60), but also the criteriop < -2, EQ. (63), since as the bipolaron dissociates into single
states weak and intermediate coupling polarons are formed. The stability condition of the bipolaron
state is also fulfilled in these crystals for improved values of the polaron energy by using the interme-
diate coupling results: In the region (3-6Ghe polaron energy values obtained in Ref. 13 are approxi-
mately 10% lower than —g#icy.

Itis important to stress that in all cases of Table Il there is a great difference between the bipolaron
electron energyV and the total energlf. The absolute value of the bipolaron electron energy is ap-
proximately 5 times as great as the bipolaron total energy, while in the case of a single strong coupling
polaron this ratio is equal to 3. This fact leads to a number of interesting consequences, such as a grea
difference between the photo- and ther-modissociation energies of the bipolaron.

In some crystals the criterion of stability of bipolaron states is on the limit of validity. Thus, in
the crystal Rb-F the bipolaron is stable at room temperatyre §,48,n =0,3; i.e.,n <n) and
unstable at helium temperatue, € 5,99,n = 0.32; i.e.n >n). So, as Rb-F is being cooled from
room temperature to helium temperature, the bipolaron dissociates. This effect could be observed over
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the absorbtion spectrum, the change in the mobility, cyclotron frequency, etc.

The obtained results show that the bipolarons are more stable than was considered before. They
can testify to the polaron nature of high-temperature superconductivity and possibility to its descrip-
tion with large radius bipolaroné.*
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