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STRUCTURE OF A STRONGLY COUPLED LARGE POLARON
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ABSTRACT
We use the translationally invariant Bogolubov-Tyablikov method to propose a polaron theory. We present

calculations of autolocalised electron states for different types of interaction. The structure of these states is
shown to be strongly related to the structure and details of the local phonon spectrum. We calculate this
spectrum in the strong-coupling limit. Applications of the large polaron model and possibilities of experi-
mental tests are considered for the strong coupling. We generalise the Bogolubov-Tyablikov treatment to the
strongly coupled bipolaron and give criteria of the stability and formation of the bipolaron states.

1. INTRODUCTION

The polaron theory is the simplest example of a quantum field theory; however, it has significant
applications in condensed matter physics. The polaron problem was originally formulated as a problem
of an autolocalised electron state in an ionic crystal [1]. The polaron description was assumed to
correspond to the strong-coupling limit.

Since the strong-coupling criterion is not satisfied for most of the ionic crystals [2], the central
problem in the polaron theory was to generalise the method to arbitrary coupling, i.e. to develop vari-
ous approaches to the calculation of the dependence of the ground electron state on the electron-phonon
coupling constant a [3, 4], to evaluate the effective mass for different values of a [5], to extend the
treatment to finite temperatures [6], and to study the polaron transport problem [4 - 8].

However, there exist a number of physical examples for when the strong coupling is realised and
the electron can be autolocalised. Among such examples are magnetically ordered crystals, where
magnetic polaron states are possible [9-11], polar liquids, where the autolocalised states are the sol-
vated electrons [12, 13], and other systems.

Moreover, even in ionic crystals, where polaron states are treated by the weak or intermediate
coupling description, the strong coupling is realised for bipolaron states. We also note that, in the
important case of the bound polaron arising in the F-center formation, the strong-coupling criterion is
much weaker and can be satisfied for ionic crystals.

Thus, the study of the strongly coupled polaron is of interest in solid state physics, although only
as a limiting case. Besides, we show in the review that the concept of the strongly coupled polaron can
be successfully used for a number of related problems, such as the meson theory of nuclei interaction
[14-16], the theory of the mobility of ions implanted into liquid helium [17], and so on.

In most works on the strongly coupled polaron, attention is focused on the study of the ground
state. At the same time, the question of the possible existence of polaron states distinct from the ground
state is basic to the study of processes related to electron excitation in polar media, for instance, the
photoexcitation of F-centers and other lattice defects.

At present, the problem of the excited polaron states, apart from the fact that it is of theoretical
interest, is gaining attention because of the problem of electron excitation transfer in a wide variety of
condensed media (solutions [18], biomacromolecules [19-22], etc.).

We note that there are two types of strongly coupled polarons: the small polaron, formed when an
electron is localised on one molecule of the medium [4, 23]; and the large polaron, formed when the
polaron state is rather diffuse. There are a number of books and reviews devoted to the polaron prob-
lem [3-7, 24- 29]. But in our opinion, there has been no unified treatment of the polaron states to date.

We will make an attempt at such a unified approach with the use of the Bogolubov-Tyablikov
method developed to describe a nonrelativistic particle interacting with a quantum field. This will
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enable us to obtain equations asymp-totically exact in the strong-coupling limit for different types of
quantum fields, which play an important role in solid state theory. In cases of physical interest, the
solutions of these equations give an idea of the complicated structure of autolocalised electron states.

Recently, the results have attracted attention owing to the development of a number of
nonperturbation methods in the physics of elementary particles. This review is devoted to the study of
the structure of a strongly coupled large polaron.

In the second part of the paper we will present the main results of the method for a nonrelativistic
particle interacting strongly with a quantum field. The third part is concerned with the investigation of
the electron states defined by different solutions of the nonlinear Schrödinger equation with the self-
consistent potential. In the fourth part we consider the spectrum and characteristics of local phonons
created by the strong electron-phonon coupling. In the fifth part we generalise the theory to the bipolaron
case. Conclusions are presented at the end  of  the paper.

2. THEORY OF A STRONGLY COUPLED POLARON

2.1 BASIC RELATIONS
The starting point in the description of motion of a nonrelativistic particle in a quantum field is

the Hamiltonian [30,31]
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Here µ is the effective mass of the particle, ~r is its coordinate, b+ and b are the operators of annihila-

tion and creation of the field quanta with energy hωk , c
k 
are the constants for the particle-field interac-

tion defined in terms of the macroscopic state of the medium. We note that they are proportional to α ,

where a is the coupling constant.
Hamiltonian (1) describes the electron-phonon interaction and has been investigated actively in

quantum field theory [33]. In general, in the presence of impurities, Hamiltonian (1) must contain the
potential of the particle -impurity interaction.

The following study of the Hamiltonian depends on the presence of small terms in Eqn (1). If the last
term of Eqn (1) is small, the problem is reduced to the weak polaron treatment [34,35]. The other limiting
case is that of strong coupling. In this case there is a small parameter ε2 = ω

k
/E∝α−2 (where E∝α2ω is the

characteristic electron energy).
This problem was originally investigated by Pekar in the framework of a phenomenological

approach [1]. The presence of a translational invariance gives rise to additional difficulties in the
problem. Consistent study of the quantum problem was carried out in Refs [30,31] (see also Ref. [32])
with regard to the translational invariance of Eqn (1).

The first step in this method is to introduce complex lattice coordinates:
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Here 
~
D

k
are the equilibrium positions of the lattice coordinates, and 

~
Q

k and P
k
 denote deviations

from the positions and the corresponding impulses.
Then, we separate the variables related to the motion of the particle as a whole:
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c

= + , ( ) ( ) ( )~ ~
expD Q D Q ikr

k k k k c
+ = + −ε ε . (3)

Here r
c
 is the coordinate of the rectilinear motion of the particle, and r  corresponds to the fluctuating

part of the motion (the trembling caused by the particle-field interaction).
Eqn (3) determines the canonical Bogolubov-Tyablikov transformation, and introduces new variables r, r

c
,

Q
k
 instead of  ~r , ~

Q
k
, whose number has increased by 3. This generates a need for some additional restrictions,
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where v
k
 are complex numbers satisfying the normalisation conditions

k k v D
i j k k ij

k

* =∑ δ . (5)

Eqns (3)-(5) are a closed set of equations determining the canonical transformation.
After performing the canonical transformation and separating the rectilinear motion, we use a

standard perturbation technique over parameter e, which enables us to obtain the corresponding wave
equations for Hamiltonian (1):
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Then, we present the wave function Ô of the system as
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The equilibrium lattice coordinates are defined by the condition E
1
 = 0 (which means nullifying

of a form linear over displacements 〈H
1
〉 = 0, and have the form
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The canonical transformation of Eqns (3) - (5) eliminates the translational degeneracy of the initial
Hamiltonian, which enables us to employ the perturbation theory. Using the standard perturbation method
for the wave function ϕ

0
(r), we obtain the wave equation determining the state of the quantum particle:
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Here E
0 
and W

0
 are the total and electron energies of the system in the zero approximation, and U(r) is

the self-consistent polaron potential.
In the slow-velocity limit we can evaluate the effective mass of the particle by expanding Eqn (9)

over the velocity v:
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Thus, in the strong-coupling limit there arises an autolocalised electron state with the energy E
0
,

the effective mass M, and the wave function defined by the solution of Eqn (9).
In turn, the state of the phonon subsystem in an adiabatic approximation corresponds to harmonic

vibrations of the nuclei moving in a parabolic well:
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Here M
kl
 is the quadratic matrix defined by the electron density distribution. In the fourth part we

obtain a relation to describe the matrix in terms of the states of the electron subsystem.
Eqns (8)-(11) determine completely the problem of a slow (nonrelativistic) motion of a particle in a

quantum field in the strong-coupling limit. We note that the formulation of the problem implies that the
medium, with which the electron interacts, is of a continuum nature (we treat the effective mass, the
dependence of the coupling constant on the macroscopic medium parameters, and so on). This assumption
is valid when a characteristic dimension of the electron density distribution described by Eqn (9) is much
greater than the lattice constant. Otherwise it is necessary to use the small polaron treatment [23].
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In the general case, the characteristic dimension of the polaron is specified by the type of the
electron-medium interaction. In the case of the local short-range interaction, when c

k 
∝ k 1/2 and ω

k
 ∝ k,

the polaron state is unstable in the strong-coupling limit [36, 37], and if we do not impose special
limitations because of the discrete structure of the medium, the dimension of the polaron state will tend
to zero. In the case of a long-range coulomb interaction, when c

k 
∝ k −1  and ω ∝ ω0 , the characteristic

polaron dimension rp ∝ (µω)1/2α−1 can exceed greatly the lattice constant.
Thus, if the particle-field interaction can be approximated in terms of the strong coupling, Eqn (9)

is fundamental in the description of the behaviour of electrons in the medium.

2.2 POLARON HAMILTONIAN FOR DIFFERENT TYPES
OF INTERACTION

Hamiltonian (1) encompasses many examples of the coupling of a quantum particle with a con-
densed medium. For instance, it describes the motion of an electron in an ionic crystal, if (see Refs [1, 34])
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where e is the electron charge, V is the volume, and c = = −−
∞
− −~ε ε ε1 1 1.

The F-center model describing the interaction between an electron and an ion vacancy is practi-
cally important. In this case we must add the coulomb vacancy attraction to the interaction potential
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Here z is the charge of the vacancy.
In a piezoelectric semiconductor [38-41],
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where s is the velocity of sound, c is the elastic constant, and e
ijk
2  is the averaged square of the

piezoelectric tensor. It leads to the same potential as in ionic crystals. In a homopolar crystal [42, 43],
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where K and ~µ  are the Young’s and the shear moduli, respectively, and G is the constant of the deforma-

tion potential. In the case of nuclear matter [14, 44],
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where g is the constant of the nucleon-meson coupling, m
0
 is the meson mass, and c is the velocity of

light.
In the case of the continuum exciton [29, 45],
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where w
p
 is the plasma frequency, e(k) is the dielectric constant of a doped semiconductor, and k

D
 is the

inverse Debye radius.
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In a number of cases, Hamiltonian (1) describes the behaviour of electrons in magnetically or-
dered media [24,46].

3. STATES OF THE ELECTRON SUBSYSTEM

3.1 THE GROUND STATE
Eqn (9) is the nonlinear Schrödinger equation. It has been investigated repeatedly for the ground

electron state with various self-consistent potentials. For the polaron [Eqn (12)] and the F-center [Eqn
(13)], the ground spherically symmetric state ϕ

0
(r) was determined in Ref. [1] by the variation method.

The best numerical solution for the ground state was obtained in Ref. [47]. The results of these calcula-
tions were confirmed in Ref. [48].

The solution of the equation with the short-range potential [Eqn (15)], corresponding to the ground
state, was actively investigated in nonlinear optics [49, 50], in the physics of disordered systems [51-
53], in nonlinear field theory [54] either by different variation methods or by numerical iterative calcu-
lations [55]. In Ref. [42] it was investigated by the variation method as applied to the problem of an
autolocalised electron state. The results were revised in Ref. [56] by the direct numerical calculation of
the problem described by Eqn (15). The numerical calculations of the ground state for the self-consist-
ent potential [Eqn (17)] are given in Refs [57,58].

3.2 EXCITED STATES

The detailed study of the nonlinear Schrödinger equation shows that in the general case its solu-
tion is not unique; it has a discrete set of solutions, each with its own self-consistent potential. This is
straightforward in the case of a F-center, where the solutions can be put into correspondence to solu-
tions of the linear problem with the hydrogen-like potential. Here, the ground state corresponds to the
ls-type solution, the First excited state with spherical symmetry corresponds to the 2s-type, and the state
asymmetric about the rotation corresponds to the 2p-type, and so on.

We note that the excited states are less well understood when compared with the ground state. It
was proved in Refs [59-61] that there is a countable number of solutions (modes) for the self-consistent
polaron potential [Eqn (12)] and for the potential [Eqn (15)]. The spherically symmetric polaron states
were numerically determined in Ref. [62], and the ones for the F-center were determined in Ref. [63].
In Refs [50, 56] the excited states were calculated for a homopolar crystal with the short-range poten-
tial [Eqn (15)].

Some of the first solutions and corresponding self-consistent potentials are shown in Fig. 1.
Generally, for the (n + 1) spherically symmetric mode the solution intersects the x axis n times. Table I
lists the numerical values of the radii, the effective masses, and the total energies for various spheri-
cally symmetric polaron states.

Note that in Ref. [66] the quasi-classical asymptotic behaviour (when n ® ¥) was found for the
electron energy of the polaron, such that:

TABLE 1.

Energies (in units of e4µc2/ h ), radii (in units of h / mµe2) and effective masses (in units of α4µ) for

different self-consistent polaron states.

n

0 1 2 3

E
n

-0,05426 -0,0103 -0,00416 -0,00223

R
n

9,29 48,4 120 216

M
n

0,0227 3,0x10-4 2,9x10-5 5,0x10-6
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Figure 1. Wave functions y(x) = Aφ(Bx) and the self-consistent potential z(x) = W U(Bx) for the ground

[y0(x), z0(x)], first [y1(x), z1(x)], second [y2(x), z2(x)], and third [y3(x), z3(x)] excited polaron states.
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h 2
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9 0 486 12 2
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,

e c
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. (18)

The data in Table 1 suggest that the radius of the state grows rapidly with the number of the
solution, while the energy and the effective mass decrease.

Thus, to observe self-consistent states with the energy higher than the ground state energy, one

must use the crystals with a coupling constant much greater than α = 10 (α µ ω= −e c2 1 2h h/  ). Typi-

cal values of the coupling constants for the majority of crystals are in the range a α ≈ 2-3. So, α = 3,97
in KCl, α = 2,0 in AgCl, α = 1,69 in AgBr, and α = 0,85 in ZnO [2]. For this reason the calculation of
self-consistent states of bound polarons is more interesting for comparison with the experimental data.

The self-consistent states have the same origin for different types of interactions considered in
part 2, but their physical characteristics can be distinct for various types of interactions. For instance,
the total and the electron energies are negative in the case of the polaron in an ionic crystal, so they are
below the bottom of the conduction band. In the case of an electron in a homopolar crystal [Eqn (15)],
the total energy of each self-consistent state is positive, while the electron energy (equal in absolute
value to the total energy) is negative.

Hence, in homopolar crystals the electron energy of the excited state is lower than the energy of the
ground state (nodeless state). There is also a great difference between effective masses of self-consistent
states for the two cases considered. In the case of an ionic crystal, the effective mass decreases rapidly
with n. On the contrary, for a homopolar crystal the effective mass increases rapidly with n.

In the case of the nonlocal screened potential (the deu-teron problem), the existence of solutions
to the nonlinear Schrödinger equation (16) depends on the value of the coupling constant g. The nodeless
solution exists if values of g are greater than some critical value g

cr
; moreover, the value of g

cr
 increases

with n. Then, both cases are possible, i.e. the polaron case, where the total and electron energies are
negative, and the case of the homopolar crystal, where the total energy is positive and the nucleon
energy is negative. (In the latter case metastable states are formed [14].)

Less evidence is accumulated about the nonspherical solutions of Eqn (9). Some such solutions
for self-consistent potential [Eqn (15)] were found in Ref. [64]. We do not know of any works in which
the existence of nonspherical polaron-like solutions was determined. As a rule, the first step in finding
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such solutions is to choose the symmetry of the solutions.
For the polaron, an attempt to calculate the 2p state was made in Ref. [65] by the variation

method. The nonspherical solutions of the 2p- and 3p-types, and a number of other solutions were
obtained for the F-center in Ref. [67] by the direct variation method. The number and the branching
conditions of the solutions were investigated in Ref. [68] in the limiting case of a very large F-center
charge. A modified Galerkin method was used in Ref. [69] to calculate nonspherical solutions of the
polaron problem (however, the calculations were probably numerically incorrect).

Recently, nonspherical solutions of the polaron and the F-center problem have been found numeri-
cally in Refs [70 -72]. For this purpose, the nonlinear differential Eqn (9) was reduced to the infinite chain
of ordinary differential equations. During the calculation, the chain was broken down into a finite number
of the equations. The condition of the chain breaking was the convergence of the solution.

As a result, the numerical solutions were obtained in a series form:

( ) ( ) ( )ϕ ϑ θr c E r Y a r
k
nl k k

nl
nl k

= −+∑ /

,

, exp ~2 1 2
, ~a

W
2 0

2
=

µ
h

, (19)

where Y
nl
( ϑ θ, ) are spherical harmonics.

Table 2 lists the total energies of the excited polaron states obtained by some authors. Fig. 2
presents the self-consistent polaron states of the 2p- and 3p-type, calculated numerically in Refs [71,
72]. As is seen from Fig. 2, the electron density distribution has a «peanut» shape typical of the p-states.
Some of the solutions were tabulated in Ref. [70].

TABLE 2.

Total energies (in units of α ω2
h ) for different polaron states.

1s 2s 3s 2p

-0,1085[47] -0,0206[62] -0,00832[62] -0,0457[71]
-0,02048[69] -0,00804[69] -0,05248[69]
-0,0169[67] -0,03829[5] -0,0472[67]

3p  3d 2s—3d 2s+3d

-0,0168[71] -0,0207[71] -0,0240[71] -0,030[71]
-0,0136[69] -0,0260[69]

Figure  2. Polaron wave functions for the self-consistent excited states of the 2p- and 3p-type.
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Figure 3. The electron density distribution for the self-consistent excited states with mixed symmetry 2s ± 3d.

The calculations also revealed a surprising  fact: that the solutions to the f-center problem branch,
and there exist the excited states with mixed symmetry. (Below we will show that the formation of these
states relates to phonon instability.) The new solutions may be classified in terms of s- and d-states.

Fig. 3 presents the electron density distribution for the 5 and d states. The sign «+» (ψ 2  > 103)

indicates regions of density condensation, and the sign «—» (ψ 2 < 103) indica.tes regions with a low

electron density. The hybrid states of the (2s + 3d)- or (2s — 3d)-type (depending on the sign of the
combination) result from the combination of these two states.

These nonspherical states are similar in shape to the hybrid (2s ± 3d) states of the linear Schr5dinger
equation with a coulomb potential. The nonlinearity of Eqn (9) leads to the solutions, which are quali-
tatively different from solutions to a linear problem, especially for r → 0. However, the similarity to
the linear problem in terms of shape and the asymptotic behaviour for r → ∞ remains, since asymptotics
of linear and nonlinear problems differ only in constant.

3.3 APPLICATION OF THE LARGE POLARON MODEL

The model of the strongly coupled polaron was the starting point in the explanation of the absorp-
tion spectrum in the F-center problem [1]. For a long time, the model was very attractive, as it allowed
us to account for the qualitative correlation between spectrum parameters and dielectric constants of
crystals. However, subsequent cyclotron-resonance experiments revealed that the measured effective
masses do not agree with the strongly coupled polaron model [2].

Besides, according to the experiments on electron spin resonance [74], in the majority of ionic crystals the

electron ground state has a characteristic dimension comparable with the lattice constant, and the large polaron model

cannot be used in this case. As a rule, to study the electron ground state in the F-center, quantum-chemical

calculations are used (for example, see Refs [75, 76]).

At the same time, most objections against the large polaron model disappear if we consider
excited electron states in the F-center. The effect of the relaxed excited state on the absorption process
in F -centers has been discussed in many reviews [73, 77 - 79].

The approximate solutions of Eqn (13), corresponding to the relaxed excited states of the 2p-type
obtained in Ref. [67], were used by Pekar [80] to describe the photoexcitation of F-centers, by Perlin
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[81] to evaluate the lifetime of excited states, and by Moskalenko [82] to describe heat excitation. The
exact solutions of Eqn (13), corresponding to the extended excited 2s-like states, were used in Ref. [83]
to calculate the lifetime of photoexcited states of the F-center and to evaluate the photoconductivity in
crystals with color centers.

The discussion of the nature of the relaxed excited state is still underway [78, 79]. This is due to
the fact that in many cases experiments on photoabsorption can be described without any knowledge of
the relaxation state itself. Thus, to explain the temperature dependence of the maximum of the F -center
photoabsorption, one does not require the electron wave functions, and the data on the so-called S-
factors, which can be used as Fitting constants [84], are sufficient.

Another problem which occurs in the application of the excited states is that there are a number of
absorption lines corresponding to transitions between various self-consistent states; these lines are
usually wide and therefore they overlap. Each line can have a complicated shape owing to the multiphonon
nature of the transition. Besides, the main contribution in the transition may be made by the local
phonons (see the fourth section). It follows that the question of whether the large polaron model can be
applied to the description of the relaxed excited state in the F-center is yet to be answered.

The large polaron can also be used to treat an autolocalised electron state in a polar liquid
(solvated electron). The absorption spectrum of the solvated electron is simpler than that of the F-
center, and consists of one or several broadened lines.

Initial attempts to consider the spectrum by means of the large polaron model [85] revealed
details of the spectrum. However, subsequent experiments and calculations have shown that the model
should be modified to consider short-range forces, with regard to the chemical structure of the environ-
ment (the size of the adjacent molecules, the coordination number, etc.).

At present, there are well-developed semiphenomenological methods based on the semicontinual
polaron model (see Ref. [86]), which treat the effect of the cavity formation by short-range interactions
and the influence of polaron tails. These models enable one to explain a lot of the experimental data on
the absorption spectrum (the effects of temperature, density and pressure on the width and maximum of
an absorption line, and so on).

Note that, although it is simple, the continual model of the strong coupled polaron is used to
account for a number of solvated electron phenomena. The effect of salt concentrations on the absorp-
tion line has been investigated by means of this model in Ref. [87]. The generalisation of the large
polaron model to disordered systems is used in Ref. [88] This model also enables us to explain a lot of
experimental -data on correlations between the thermodynamic behaviour of the medium (density, pres-
sure, and the Kirkwood effect) and the shape of the absorption spectrum.

A specific problem is the use of the large polaron model for long-range transfer. We emphasise
that the large polaron model is the starting point for the theoretical study [89]. A vast amount of work
has been devoted devoted to this question (see, for instance, Refs [90-92]). In recent years this question
has taken on great significance owing to the «superexchange» problem.

Available experimental data reveal that the rate of electron transfer is anomalously great for
globular proteins and for a number of organic molecules. As assumed, electron transfer is realised by
excited electron states (see Ref. [92]). The nature of these states remains to be explored [93]. In Refs
[20, 22] an attempt was made to explain the high rate of electron transfer with the use of the large
polaron model modified for the protein globule [19]. According to the model, results of the calculations
agree with experimental data.

As a rule, the application of the polaron theory in semiconductors is limited by a weak electron -
phonon coupling region (α ≤ 1). The experimentally observed doublet structure results from the fact
that the polaron effect is accounted for in the absorption spectrum, when frequencies are in resonance
with the optical vibrations of the semiconductor. The polaron effect is also very important in explaining
the behaviour of charge carriers and other phenomena.

The strong coupling case can be realised in heavily doped semiconductors [29, 45]. In a heavily
doped semiconductor of the hole-type, an electron is surrounded by holes; much as a polaron in an ionic
crystal. Similar phenomena occur in the case of a hole in a semiconductor of the n-type. The states of
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this type, with the total charge equal to zero, were called continuum excitons [45].
The ground and excited states of continuum excitons have been investigated in Refs [29,45].

Narrowing of the gap in the semiconductor results from the generation of the continuum excitons, which
explains the dependence of the gap on the impurity concentration.

Usual exciton states do not exist in metals because of the strong screening of an attractive electron-
hole potential. The singularities in the x-ray absorption spectrum (the so-called edge singularities) can
result from the generation ol continuum excitons in metals. The positron annihilation ir metals can also be
considered as the annihilation of continuum excitons, where the positron plays the same role as a hole.

The connection between ideas underlying many-particle theory in solid state physics and nuclear
physics enable us to use the underlying methods developed in both cases [14-16], The basic problem in
nuclear physics, i.e. of a nucleon in a meson field, is similar to the polaron problem or the electron -
phonon interaction. The divergence between results in the ultraviolet range when the perturbation theory
is used is the principal difficulty which arises in the simplest case of an interaction between a
nonrelativistic nucleon and a meson field.

A consistent treatment without any divergences is carried out in Ref. [14] for a strongly coupled
nucleon in a meson field. In the case of two nucleons, the problem is shown tc be similar to the bipolaron
problem, where coulomb repulsion is absent, (see the details given in part 5) and is educed to a one-
particle problem [Eqn (9)]. The solution of nonlinear equation (16) gives values of the bound energy
and the deuteron radius which are consistent with the experimental results.

4. LOCALISED PHONONS

4.1 SPECTRUM OF THE PHONON FREQUENCIES

We considered above the electron density behaviour foi polaron-like states in the strong coupling
limit. This distribution can be responsible for a number of important effects and this has been demon-
strated in various experiments (see part 3). Equally significant is the fact that, in the case ol strong
interaction, the electron state is localised and the phonon subsystem state is fundamentally changed.

In terms of dynamics of the lattice, the presence of the localised density distribution of an excess
electron can be considered as the presence of a special defect. As a result of the strong electron-phonon
interaction, the phonon spectrum changes significantly and the bound phonon states are “ormed [94], as in
the case of an imperfect lattice [95]. While the localisation of the latter is due to the changes in the atom
mass or the lattice force constant, the localisation of the former is due to changes in the electron state itself.

In the case of translation symmetry, localised phonons form a cloud which is coupled to an
electron and moves together with it. Note that bound phonon modes can also occur in the case of weak
coupling, and that they were studied originally and became known as dielectric modes [96]. In Ref.
[94] the earlier theoretical and experimental works on this theme are reviewed. The strong coupling
case is considered in Ref. [97]. Here we present a short description of the results obtained.

As was noted in part 2, the characteristics of the phonon spectrum are described in a harmonic
approximation and given by a matrix M

kl
. If we introduce eigenvectors Λ

sk
 and eigenvalues ω

s
 such that

M kl sk s sl
k

Λ Λ=∑ ω2
, Λ Λsk s k= −

* , Λ Λsk tk st
k

* =∑ δ . (20)

then relation (11) for the phonon subsystem takes a diagonal form:

( )1
2

0
2

2
2 2

2

∂
∂ζ

ω ζ ζ
s

s s s s
E−







 +









 =∑ ~ Θ . (21)

where ζ s sk k
k

Q= ∑ Λ  are normal vibrations of the lattice.

Thus the state of the phonon subsystem in the adiabatic approximation is described as a product

of wave functions ( ) ( )Θ Π Θζ ζ= s s s
 and is characterised by a set of quantum numbers [n

1
, n

2
,...,n

s
] for
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noninteracting phonons with renormalised frequencies w
s
, whose squares are eigenvalues of the matrix M

kl
.

The energy 
~
E

2
, which results from the second-order correction of the total energy of the system,

is expressed as:

( )~
E E n

k s s s
k

2 2 0

1
2 2 2

= − = + −∑∑∑ h
h h

ω ω ω ω . (22)

Thus, the state of the phonon subsystem is given by the matrix M
kl
 and its eigenvalues ωs

2 .

In the strong-coupling case the matrix M
kl
 is defined by the state of the electron subsystem. When

we express the electron wave function of the first order in the form ( ) ( )ϕ ζ ζ1 r r, = ∑ Χ s s
, we obtain

[97-99] the following relations for the eigenvectors Λ
sk
 and the eigenvalues ω

s
,

Λ Χsk
s

k k
h* =

−
2

2
0
2 0ω ω

ϕ ,  h
k 
= c

k
 exp(ik × r) + D

-k
, (23)

( )H E h h
s

s
k k s

k
0 0

0

0
2 2 0

2
− =

− ∑Χ Χ
ϕ

ω ω
ϕ . (24)

Eqn (24) defines the local-phonon frequency spectrum as the eigenvalue spectrum of a linear
integro-differential boundary-value problem. This problem was studied for the electron ground state
[99], where a set of the initial frequencies was calculated. For the polaron ground state, Eqn (24) was
investigated in Ref. [100] in the variation form.

In Ref. [101] values of ω
s
, were found analytically for a one-dimensional problem. The influence

of dispersion on the local phonon spectrum was considered in Ref. [102]. For excited spherically
symmetric states of the polaron and the F-center, Eqn (24) was studied in Refs [102,103]. Table 3 lists
the dimensionless phonon frequencies for the ground and the first self-consistent polaron states. Fig. 4
shows the phonon spectrum approximation.

TABLE 3.
Squares of phonon frequencies w2 (n, l) (in units of w2) for the ground and the first excited self-consistent
polaron statess

1/n Ground state First excited self-consistent polaron state

2 3 4 5 2 3 4        5

0 0,412 0,9254 0,9792 0,992 1,538 0,3586 0,8896 0,9574
1 0 0,8932 0,9726 0,9898 2,54 0 0,7992 0,9676
2 0,8158 0,9596 0,9864         -1,62 0,882 0,9254
3 0,9416 0,9816 0,4948 0,9362
4 0,976 0,817

Figure  4. An approximation of the local phonon spectrum for the ground (a) and the first (b) excited states
of the F-center in KCl. The half-width of each line is σ = 0.0025 ωs.
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Figure  5. Dependences of the square of the local phonon frequency ~ /ω ω ω
32
2

32
2

0
= (a) and the electron

energy ( )~
/E W= α ω2

0
h (b) on ~v = Z/(Z + ε0 c).

4.2 PHONON INSTABILITY

If all the eigenvalues of the matrix M
kl
 are positive, then the amplitudes of the phonon oscillations

are small [Θ(ζ
s
) ∝ exp(-ω

sζ s
2 /2)] and the system remains stable. If any of the eigenvalues is small or

negative, the amplitude in this approximation is of the order of the crystal dimension, and the system
loses its stability. Thus the problem of stability, with respect to the motion of phonons, requires the
study of the eigenvalues of the matrix M

kl
.

In Refs [102, 103] we found numerically that, for excited states of the polaron and the F-center,
there are critical values of the effective F-center charge v

cr
 = Z/(ε

0 
c) = 0.21, when the square of the

renormalised frequency becomes negative for one or several modes and the phonon instability of the
system occurs. As shown in Ref. [98] this phonon instability is due to the branching of solutions to the
nonlinear problem given by Eqn (13).

In Ref. [72] Gabdoulline found the critical values v at which the self-consistent states of the (2s ±
3d) -type appear in addition to the excited self-consistent 2s state. Fig. 5 shows the dependences of
ωnl

2 for the phonon mode n = 2, l =  3, and the electron energy of self-consistent states ~
E on the effective

F-center charge.
The occurence of the phonon instability is similar to the Jahn - Teller effect. For the polaron, in

addition to self-consistent states, each corresponding to its own potential well, there is an infinite set of
non-self-consistent electron levels available for each potential well. Each of these levels is char-
acterised by its own wave function ϕ

n
 and energy E

n
:

( ) ( )− ∇ + ′
′

− ′
+ −









 =∫2 0d

v

r
E

n n
r

r

r r
r

ϕ
ϕ , (25)
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where ϕ(r’ ) is the self-consistent solution defined by Eqn (8).
If non-self-consistent electron levels are nondegenerate, then, according to the standard perturba-

tion theory, the first-order correction X; can be obtained by expanding over these functions:

X
s
(r) = C

s 
j
s
(r), ( ) ( )Χ s sr rϕ = 0 . (26)

Substituting Eqn (26) into the frequency Eqn (24), we obtain a relation between the renormalised
phonon frequencies and the spectrum of the electron states:

ω
ω

ϕ ϕ
ϕ ϕs

s
s

s
e

E E

2

0
2

2

0
0

01
2

= −
− − ′r r . (27)

When E
s
− E

0
 ≤ 2 ϕ ϕs

e
0

2 1
r r− ′ − , i.e. the electron levels are sufficiently close, the square of the

frequency becomes negative; ω ωs
2

0
2/ < 0. This entails instability, which leads to branching of the solu-

tions. In this way the self-consistent electron state has a mixed symmetry of these two levels. Fig. 3
presents schematically the 2s- and 3d-states, and the resulting states of the 2s ± 3d-type.

The study of the phonon instability of excited polaron states makes it clear that the branching of
solutions to Eqn (8) takes place at a loss of stability, which gives rise to new self-consistent states with
mixed symmetry. This effect has two main causes.

The polaron state is given by nonlinear Eqn (9), which includes two types of potentials: a self-
consistent polarisation potential and a coulomb one. Symmetries of these two potentials are different.
As the contribution of these two interactions changes quantitatively, the symmetry of some solutions
changes. This effect is characteristic not only of the F-center, but also of some other similar quasiparticles
(piezopolaron, fluctuon, etc.) bounded on impurities.

Note some important consequences of this phenomenon. Unlike the problem given by Eqn (8), the
stability problem [Eqn (24)] is linear. Thus it can be expected that it is easier in terms of calculations.
From this standpoint it would be reasonable, first, to study the linear problem. Find the symmetry of
solutions and branching points; and, second, to analyse the self-consistent solutions of Eqn (8).

The described instability may be observed experimentally. It will lead to decay of excited states

for time ω−1 . Note that, for LiCl (v = 0.35), LiBr (v = 0.29), and fluorides of alkali-earth metals, the

effective charge v = Z/(ε
0 
c) is almost equal to the critical charge v

cr
 = 0.21. This explains the absence of

luminescence [104] in experiments on photo-excitation in these crystals.

5. STRONGLY COUPLED BIPOLARON

5.1 HISTORY OF THE BIPOLARON PROBLEM

In the introduction we noted that bipolarons provide another example of when the strong coupling
occurs. The intensive study of bipolarons in recent years is not only because of general theoretical
interest in the problem, but also because of its important applications, such as in the study of high-
temperature superconductivity [105,106].

The history of bipolaron study is rather dramatic. For a long time, errors in calculation have
called into question the existence of the bipolaron. The problem was first recognised by Ogg [107],
who suggested the occurence of superconductivity at temperatures above the boiling point of nitrogen,
when he observed abnormally high conductivity in metal - ammonia solutions (as early as forty years
before the discovery of high-temperature superconductivity in metal-oxide ceramics [108]).

At present there is reliable experimental evidence that electron spin-pairing states are dominant
in metal-ammonia solutions at concentrations of about O.I promille [109, 110]. Some authors relate this
to bipolaron formation. But the mechanism of the phenomenon is still not fully understood.

In recent years, research has been conducted [III -114], which has revealed the bipolaron states at this
concentration with the use of the Kohn-Sham theory and molecular dynamics methods, and where the charac-
teristics of these states were also determined (electron density distribution, effective potential, etc.).
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The bipolaron problem was First considered theoretically in 1951 [115]. In the description of the
bipolaron state, the starting point is the Pekar-Frö1ich Hamiltonian of two electrons interacting with a
phonon Field:

( ) ( )[ ]{H
m

b b U r r c k r r b
r r k k k k k

kk

= − ∇ − ∇ + + − + − ++ ∑∑h h
h

2
2

2
2

1 2 1 02 21 2µ
ω exp i

( )[ ] ( )[ ] ( )[ ] }c k r r b c k r r b c k r r b
k k k k k k

+ − + − + −+ +
1 0 2 0 2 0

exp exp exp* *- i i - i . (28)

where r
1
 and r

2
 are the coordinates of the First and the second electrons, respectively; r

0
 is an arbitrary

reference point; U(r) is the electron interaction potential. It is usually assumed that r
0
 = 0, and in this

form the Hamiltonian of Eqn (28) is the initial equation in the bipolaron study.
Most authors turn to variational calculations of bipolaron wave functions. In semiclassical

bipolaron theory [1] wave functions were selected in the multiplicative form. With this approximation
one does not determine the presence of the bound bipolaron state. It was Vinetsky and Gitterman [116]
who First obtained the bound bipolaron state in the framework of the semiclassical treatment.

The best evaluations of the bound bipolaron energy were obtained in Ref. [117], where trial
wave functions were chosen with regard to the electron correlation. In particular, the condition of the
bipolaron state formation was obtained (η > 0.14, where η = ε∞/ε0 is the ion coupling parameter). The
current state of research is presented in reviews [118, 119]. The treatment extended to the case of the
presence of short-range interactions is given in Refs [120, 121].

Note that in the bipolaron theory no exact solutions have been obtained. This is in contrast with
the polaron theory, where asymptotically exact solutions are known in the limits of both weak and
strong coupling. Moreover, in the bipolaron case there are no solutions at all for small and intermediate
values of the coupling constant a.

According to Ref. [122], a bound polaron state is possible only at sufFiciently large values of the
coupling (α > 5.2). In the adiabatic limit, both the electrons are believed to move in one and the same
potential well, induced by their fast oscillations. For this reason the interaction of the electrons with the
polarisation φ(r

1
, r

2
) takes the form:

φ(r
1
, r

2
) = F (r

1
) + F (r

2
). (29)

As a result, the problem is reduced to the calculation of a two-particle bipolaron wave function
in a self-consistent potential. Since there are at present no methods to Find asymptotically exact solu-
tions of the problem, some additional assumptions are needed. As mentioned above, the form of the
approximation of the wave function can have a signiFicant effect on the result.

5.2 ADIABATIC THEORY OF THE BIPOLARON

An alternative approach is exempliFied by Ref. [123], where we used the Bogolubov-Tyablikov
method [30,31] to develop a consistent adiabatic translationally invariant theory. In this approximation
the bipolaron motion is separated in the adiabatic limit, and the motion of the centre of the bipolaron
mass is presented as a plane wave.

Relative electron coordinates describe fast oscillations in a potential well, which has the form of
the electron-effective interaction:

φ(r
1
, r

2
) = φ(r

1
 - r

2
). (30)

The potential well is not Fixed in space, but  follows adiabat-ically the centre of the electron mass.
The interaction [Eqn (30)] is clearly translationally invariant unlike the usual phenomenological ap-

proach [Eqn (29)], which does not possess translational invariance with a spa-tially fixed potential well.
 Within this approach we can treat the problem in a way similar to the treatment described in the

second part of the paper. As a result, the problem becomes one-particle and is reduced to the study of a
Schrödinger equation for the relative motion of the electron pair:
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 ( ) ( ) ( )− ∇ + + −








 =

h

µ
ϕr

r U r W r2
0 0

0Π , (31)

( ) ( ) ( )Π r
c kr

d
k

Rk k

kk

= −
− ⋅

×∑ ∫2
2 2

2

2 2 0

2ω
ω

ϕ
v k

R
R

cos cos . (32)

Then, we can determine the bipolaron mass as in the case of Eqn (10):

( )M
c k

d
kR

Rk

kk

* cos= ∫∑2
3 2

2 2

3 0

2
2

ω
ϕR . (33)

Figure 6. Quasiparticle-like solutions y(x) = Aφ (Bx) of Eqn (32) for different value of κ.

( ) ( )A W e c= − −1 1 2 1 22h µ π/ /
, ( )B W= −

h 2 1 2µ /
.

TABLE 4.

Vaines1 of energies 
~
W, total energies 

~
E , radii 

~
R , and the effective masses of bipolarons 

~
*M .

Crystall2 η hω /eV ~α ~
W /eV

~
E /eV

~
R /Å

~
*M

LiF 0.213 0.082 5.24 10.7 2.13 2.3 31.6§
LiCl 0.235 0.052 4.43 4.6 0.93 3.7 40.3
LiBr 0.243 0.079 5.25 3.2 0.62 4.5 71.7
LiH 0.279 0.140 1.98 2.2 0.42 5.5 1.3
TlBr 0.176 0.014 4.54 1.56 0.317 6.3 0.47
TlCl 0.202 0.020 4.46 2.15 0.45 5.3 0.61
TiI 0.315 0.012 3.4 0.54 0.1 11.3 0.6
CsF 0.269 0.030 7.13 6.3 1.2 3.3 222
RbF 0.299 0.036 7.03 7 1.25 3 186
SrTiO

3
0.016 0.0153 1.84 2.9 0.67 4.4 1.98

1 ( )α α µ= ~ /
/

m
0

1 2
, W W m= −

~
/µ

0
, E E m= −

~
/µ

0
, R Rm=

~
/

0
µ , and ( )M M m* *

~
/= µ 0

2
for

all crystals, except LiF, TIBr, TICI. It is assumed that µ ≡ m0 .
2 Experimental values are given from Ref. [2].
§The effective mass of electron LiF is given in Ref. [124].
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5.3 RESULTS OF CALCULATIONS

In Ref. [123] calculations were performed for an ion crystal (ω
k 
= w, ω

k
 ∝ k −1), and the interaction U(r)

between two electrons was the Coulomb repulsion screened by the high-frequency dielectric permittivity:

( )U r r
e

r r1 2

2

1 2

− =
−∞ε . (34)

 The solutions obtained depend on the parameter κ = 0.125(1 − ε∞/ε0).
 Fig. 6 shows particle-like solutions of the boundary problem [Eqns (31), (32)] for some x val-

ues. It is evident from the figure, that the probability of the electrons being present at the same point
decreases as x grows, while the maximum of the electron density distribution moves to the right and
goes to infinity at the critical value κ = 0.5. This is becausi of the fact that, at sufficiently large values
ofr, the asymptoti of the potential [Eqns (31), (32)] has the form:

( )r e r
e

r r
Π −









 ≈ −

∞ →∞ ∞

2 4 1

ε ε ε~ . (35)

The localised solution of Eqn (31) exists only when the right-hand side of Eqn (35) is positive,
i.e. for κ < 0.5 Accordingly, we have η

cr
 = 0.75 for the ion-coupling parameter η = ε∞/ε0 = (8κ − 1)/8κ,

i.e. it exceeds greatly the valui of this parameter obtained in phenomenological theory.
The critical value of the parameter h

s
 at which the bipolaron is stable, is energetically advanta-

geous to the bipolaroi state with respect to its decay into two independent polaron states:

E≤ 2E
pol 

, (36)

where E
pol

 is the energy of a single polaron state.
Calculations show that inequality (366) is valid if η < η

s
  where η

s
 = 0.31. Table 4 lists the

values of parameters for crystals satisfying the condition η < η
s
, with calculated values of bipolaron

energies, radii, and effective masses. When the experimental data on the effective electron mass m are
not available, we present results depending only on the ratio m/m

0
, where m

0
 is the free electron mass.

The condition for adiabatically strong coupling is that the frequency of the electron oscillations in
the polaron well should be much greater than the frequency of lattice oscillations. It follows from Table
4 that this condition is met for reasonable values of the effective electron mass.

Thus, while a single polaron meets the condition of weak or intermediate coupling, a bipolaron
follows the strong coupling condition in the case of the studied crystals. This enables us to evaluate
critical values of electron-phonon coupling constants α

s
, when the bound bipolaron state is possible.

It follows that the energetic requirement for the bipolaron formation is that

E > 2α ωh . (37)

Since E ∝ α2, condition (37) allows us to estimate values of the critical coupling constants α
s
 Table 5

lists these values.

TABLE 5.
Critical values of electron-phonon coupling constants αs, for different values of η

      η

0 0,053 0,094 0,132 0,166 0,199 0,228 0,256 0,282 0,305 0,317

α
s

1,54 1,64 1,74 1,85 1,97 2,10 2,25 2,40 2,58 2,77 2,90

Note that the critical values of coupling constants, obtained from the exact solutions of the bipolaron
equations, are much smaller than those evaluated by trial variational functions. Thus, according to Ref.
[124], the critical values are α

s
 ≈ 5.4 for η = 0, α

s
 ≈ 7.2 for η = 0.1, i.e. they appear to be three times

as large as those obtained from the exact solution to the bipolaron problem.
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Note also that in the transition from the polaron to the bipolaron state, the symmetry of the solu-
tion changes, which can lead to significant rearrangement of the local phonon spectrum near the critical
value of the parameter η

s
 because of the phonon instability of the solution, in the same way as in polaron

excited states (see part 4).
Some of the results obtained can be easily extended to the two-dimensional case. The two-

dimensional bipolaron problem has attracted much interest with the discovery of high-temperature
superconductivity.

 The simplest model, used to describe polarons in two-dimensional space, is obtained from Eqn
(12) with c

k
 replaced by

( )c
Vk m

D
k D

d
D

D

,

/ /

= 





−













−

−
h

h
ω

α
ω

π1

1 2
1

1 2

2
2

1
2Γ . (38)

The physical parameters (frequencies, dielectric constants, effective masses) were assumed to
be the same as in the three-dimensional case.

The dependence of c
k,D

 on the wave vector is chosen from the requirement that the electron-
polarisation interaction should be of the Coulomb form, 1/r , in the D-dimensional case. The numerical
factor in Eqn (38) is given by the condition that c

k,D
 corresponds to c

k
 at D = 3.

To evaluate the energy and critical constants in the two-dimensional case, the estimates obtained
in Eqn [125] with a Gauss approximation can be used. These estimates relate bipolaron energies in
three- and two-dimensional cases.

As a result, in the two-dimensional case we express the bipolaron energy as

E E
D bipol D bipol2

2

3

2
3

3
4, ,= 





π
, (39)

where E
3D,bipol

 is the bipolaron energy in the three-dimensional case. Accordingly, κ
2D

 = κ
3D

 and η
2D 

= η
3D

.
The critical value of the electron - phonon coupling constant is derived similarly and in the two-

dimensional case takes the form:

α
π

αs D s D, ,2 3

3
4= , (40)

where values of α
s
 are listed in Table 5.

The translationally invariant bipolaron theory presented above yields results qualitatively differ-
ent from those obtained with the standard adiabatic method. According to Ref. [123], the situation is as
follows. In bipolaron formation the electrons are localised in a deep potential well with the electron
excitation energy W ~ 1 eV. This energy remains the same up to the critical value of the parameter η

s
 =

0.31, at which point the bipolaron state decays into independent polaron ones.
Up to the critical value η

s
 = η, the frequency of the electron oscillations in the bipolaron potential

well greatly exceeds the frequency of the lattice oscillations, and we can use the adiabatic approxima-
tion. The criterion of adiabaticity fails only for crystals with very small electron-phonon coupling
constants, such as PbSe (α = 0.215) and PbS (α = 0.317), where η

s
 < η, i.e. bipolaron states are

conceptually possible.
Bipolaron characteristics are best observed in crystals TlBr and TlCl. In these crystals continual

approximations produce good agreement with results; the radii of the states are 20Å and 16Å, respectively.
The adiabaticity condition is also met with a great reserve, despite a relatively small constant α ≈ 2.5.

It is significant that, in all the cases listed in Table 4, there is a great difference between the
electron energy of bipolaron W and the total energy E. The modulus of the electron energy of the
bipolaron is approximately 5 times as great as that of the total energy, while for a single polaron in the
strong coupling limit this ratio is equal to 3. This distinction can lead to a great difference between the
energies of photodissociation and thermodissociation.

In some crystals the criterion of stable bipolaron formation is at the limit of accuracy. Thus, in
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RbF the bipolaron is stable at room temperature (η = 0.3) and unstable at liquid helium temperature (η = 0.32 > η
s
).

Therefore, in RbF the cooling from room temperature to that of liquid helium leads to the bipolaron dissociation. This
phenomenon could be observed on absorption spectra, changes in mobility and cyclotron frequency, etc.

Note also that this method for separating out the translationally invariant part of the motion and reduc-
ing a two-particle problem to a nonlinear Schrodinger equation is universal and can be applied to any other
two-particle problem in the strong-coupling limit, such as excitons, electron-hole pairs, and so on.

6. CONCLUSIONS

Despite the long history of bipolaron study, the interest ii the problem of the strongly coupled
polaron has not dimin ished. This is probably because of the role which the polaroi plays in the physics
of particle - field interaction.

Unlike many other quasiparticles (phonons, magnons plasmons, etc.) described by the spectrum
and type of linea excitations of the system, the strongly coupled polaron is : «nonlinear» quasiparticle
formed as a result of a nonlinea self-consistent interaction. This, in turn, requires the use o nonstandard
mathematics [66,128].

In our view, the potential of modern mathematical meth ods has not been exploited in the polaron
problem. The abov example demonstrates that even the generalisation of th well-known Bogolubov-
Tyablikov method to the case o two-particle self-consistent states yields new results whici differ sig-
nificantly from the usual variational calculations.

The above results show that a strongly coupled largi polaron possesses a complicated internal
structure whici manifests itself in a wide variety of self-consistent states fo the electron subsystem and
in the local phonon spectrum The peculiar behaviour of the local phonon spectrum i closely related to
the topology of self-consistent states of thi electron subsystem and is given by the symmetry of the self
consistent potential in the nonlinear Schr5dinger equation.

Note that the investigation of such equations has much to do with the development of numerical
methods for the solu tion of nonlinear boundary problems. It seems likely that nev interesting results in
this Field can be obtained with the activi use of high-performance parallel computers.

The above discussion proves that the experimental test o the possible existence of strongly cou-
pled large polaron and bipolaron states is rather ambiguous. However, in our opi nion, dramatic quali-
tative results of the theory (such as thi availability of excited self-consistent states, or phonoi instabil-
ity) can be revealed in specially designed experiments
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