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An electron is shown to localize in a strong magnetic field at the cluster with the number of 
molecules less than the critical one, which is impossible in the absence of the field. For the 
subcritical ammonium cluster with n=8 and magnetic field H≈105 Oe, the electron 
photodetachment energy is 10-3 eV. 
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1. Introduction 

 
In the present paper we consider properties of a charged cluster of polar molecules in a strong 

magnetic field. If the number of cluster molecules is rather large, the cluster can be considered as a 
dielectric sphere. Then electron localization at the cluster results from attraction of the electron by the 
sphere and formation of the polaron state. This mechanism was considered in [1-3], in particular, to show 
the existence of a critical sphere size Rc at which the polaron state arises. 

Below we demonstrate that a strong magnetic field localizes the electron at the cluster. In particular, 
the electron state bound to the cluster is possible for subcritical clusters in the strong field. 

 
2. Cluster in a magnetic field 

 
The electron energy W in the cluster subject to a magnetic field is determined by the Schrodinger 

equation 
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where µ is the effective electron's mass, P̂  is its momentum, A is the vector potential, and φ(r) is the 
potential of cluster polarization. According to the polaron model, the latter takes on the form 
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where 1

0
11~ −−

∞
− −= εεε  is the effective dielectric constant, ε∞, and ε0 are the high-frequency and static 

dielectric constants, and c is the constant determined by vanishing the potential outside the cluster. Using 
the cylindrical coordinates and symmetrical calibration for the vector potential, Ax = -HY/ 2, Ay = HX / 2, 
and Az = 0, we have 
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where 
He

c
=0ρ  is the effective magnetic length. The eigenfunctions in the right side of (3) are 

expressed in the cylindrical coordinates by 
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where m is the projection of the electron orbital momentum onto the magnetic field direction, 
n=N+1/2(m—|m|), and L(m)

n are the Laguerre polynomials. The value n can be shown to be positive and m 
> -N. For the lowest Landau band with n = N = 0, the wave function (4) is given by 
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3. Cluster in a quantizing magnetic field 

 
The potential well produced by the cluster polarization in magnetic field is axially symmetrical. 

Hence, m is the quantum number of the problem and m=0 corresponds to the electron ground state. Below 
we consider the limiting quantizing magnetic field when WH >ω , where ωΗ = eH/µc is the frequency 
of the lowest Landau level. In this limit, the wave function determined by (5) and (6) is the asymptotically 
exact solution to problem (1). Substituting (5) and (6) into (1), multiplying equation (1) by 2πρR00(ρ), and 
integrating it over ρ, we have the Schrodinger equation for χ(Ζ) 
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and respectively 

( ) .,,0 Ω∉= ZZe ρϕ                                                             (9) 
 

We integrate (8) over ρ' and Z' in the whole space, while over ρ and Z only inside the cluster. The 
constant c is determined by continuity of φ(Ζ) at the cluster surface. As it follows from (6) and (8), in the 
limit of superstrong magnetic field, as ρ 0 → 0, we have 
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where �1 is a number of the order of unity. Solving the Schrodinger equation (7) with potential (10) is a 
complicated problem. To find the solution, we use a variational approach. Taking the asymptotics 
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we use a shallow well ( )zeϕ  for which ( ) ( )zeze ϕϕ <1 , instead of the potential well ( )ze 1ϕ . As it 
follows from (10) and (11), we can choose 
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where R is the cluster radius. 
 

4. Dimensionless nonlinear cluster equations 
 

Substituting (12) into (7), we arrive at the approximate equations for an electron in the cluster 
subject to the quantizing field 
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Using the scaling 
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we have instead of (13) the dimensionless equations 
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where 
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The electron energy is found from normalizing condition (14). Substituting (15) and (16) into it, we 

have 
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where 

( ) .~~2 ZdZY∫
∞

∞−

=Γ                                                                  (20) 



Thus, according to (19) and (20), the electron energy is calculated by integral (20), using the 
solution to (17). As it follows from (18) and (19), there is a relation between ξ0 and Γ 
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5. Asymptotic solutions to equations (17) 

 
We consider the case of a shallow well, i.e., 
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that corresponds to 
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men we nave the followin asymptotics under condition (23) (see Appendix) 
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The parameter Γ can be directly calculated by (20). Taking into account the small ξ0 , we deduce 
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where according to (17) we assume the solution to take on the form Y( Z~ ) = Υ(ξ 0) exp(- Z~  + ξ 0),  0

~ ξ>Z
in the whole range of Z~  except for a narrow interval | Z~ | < ξ0 Comparing (24) and (25), we arrive at 
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Further, using (21) and (26), we find 
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and the electron energy is given by 
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which can be transformed into 
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where 2

0
2 emaB =  is the Bohr radius. 

As it follows from (16) and (27), the typical electron size rz (the scale factor for dimension-less 



variable Z~ ) is expressed by 
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Next we consider the case of a deep well, when 
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Neglecting x(R) in (13), we find from (17) that 

 
Γ→ 4, as ξ0 → ∞.                                                            (33) 

 
Thus, in this limit the electron energy is given by 
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while according to (16) the typical electron size takes on the form 
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6. Numerical solution to problem (17) 

 
Equation (17) can be numerically integrated. It has only one parameter 
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The values of Γ and ξ0 are determined by (21) and by continuity of Y( Z~ ) at | Z~ | = ξ0. Figure 1 

plots solutions to (17) at various κ. 

 
Figure 1. Solutions to Eqs. (17) at different κ 

 
By the solutions found, we can calculate the total electron energy determined by the functional 
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Note that equations (13) result from varying the functional F with respect to wave function χ. Using 

(15) and (16), we express the total energy 
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We also find the effective electron radius 
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Table 1 lists Γ, F ,Γ1, and ξ0 at various κ. Using (19), (38), and (41) one can calculate the electron 

and total energies, as well as the effective electron radius for the tabulated κ. 
Figure 2 depicts the dependence of dimensionless total energy |W| on κ. As is seen, there are 

 

 
Figure 2. Dependencies of the dimensionless elect-ron ( )2242 ~// εµπ eW  (1) and total 

( )242 ~2/ εµπ eF  (2) energies on the parameter . 24 ~/ εµπκ Re=
 

Table 1. Numerical parameters of the problem. 
 

ξ0 κ Γ F Γ1

4.00 16.02 4.005 -1.33 2.773 
3.00 12.11 4.039 -1.33 2.774 
2.60 10.61 4.084 -1.34 2.779 
2.20 9.198 4.181 -1.34 2.795 
2.00 8.530 4.265 -1.34 2.814 
1.80 7.899 4.388 -1.35 2.846 
1.60 7.313 4.571 -1.37 2.903 



1.40 6.783 4.845 -1.39 3.000 
1.20 6.323 5.269 -1.43 3.168 
1.00 5.959 5.959 -1.49 3.465 
0.80 5.736 7.170 -1.61 4.020 
0.60 5.759 9.598 -1.83 5.182 
0.40 6.336 15.84 -2.30 8.253 
0.20 9.013 45.07 -3.80 22.82 
0.18 9.660 53.67 -4.14 27.11 
0.16 10.48 65.49 -4.56 33.02 
0.14 11.54 82.46 -5.11 41.50 
0.12 12.98 108.1 -5.84 54.33 
0.10 15.00 150.0 -6.87 75.25 
0.08 18.05 225.6 -8.40 113.1 

 
two solutions at specified κ. The upper branch corresponds to the external states in which the electron 
localizes mainly outside the cluster, the lower branch does to the internal states localized inside the 
cluster. The minimum value κrnin =5.71 corresponds to the bifurcation point where these solutions merge, 
indicating the minimum cluster size Rmin at which the electron is bound to the cluster. According to (36), 
this size (in angstroms) is equal to 
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7. Application of the theory to ammonium clusters 

 
We applied the above results to the clusters consisting of polar molecules of (NH3)-

n type. The 
experimentally found critical number of molecules in these clusters is nc = 36. For the higher numbers of 
molecules the electron is bound to the cluster [4] and localized in it with the state energy  
W=(-1.25+2.63n -1/3)eV, while at n < nc the electron is delocalized. 

According to our results, electrons can be captured by the clusters in superstrong magnetic field 
even at n<nc . To estimate the critical number R when the electron is localized, we use the relationship  
R = Rs n1/3, where Rs is the effective radius of ammonium molecule. Using data from [1-3] and (42), we 
find that nc = 1 for the clusters in magnetic field. Therefore, the electron states are bound to the cluster in 
a wide range of the number of cluster molecules from 1 to 36. We estimate the energies of these electron 
states and the magnetic field required to bind the electron at the ammonium cluster with n = 8. At Rs = 
2.85Å [1-3], the cluster size is R = 5.7 Å. Using ε~ =1.92 and µ ≈ m0 [1-3], we find by (38) κ =17.5. 
According to Table 1, it corresponds to Γ ≈ 212 and 4 for the upper and lower branches of solutions. We 
calculate W~ -10-3eV by (19), F~ -0.5 × 10-4 eV by (41) and rz ≈ 70Å by (31) for the upper branch 
solutions. The field is quantizing for this branch if it exceeds H ~ 105 Oe. 

We also find that W ≈ -2.3eV, F ≈ −0.7eV, and rz ≈ 1.3 Å for the lower branch. Therefore, it is the 
small-sized state, and the continual approximation is not valid to describe this state. For this solution the 
field is quantizing only at superstrong values, H ~ 108 Oe. 
This work was supported by the Russian Foundation for Basic Research (Project Code No. 95-04-11432). 
 

Appendix1

Asymptotic solution to dimensionless equations (17) as ξ0 → 0. 
 
We denote ξ0 = α and put 

 

( ) ( ) .,,
~

ζζζ aYaU
a
UY

R
Z

a
Z

==⎟
⎠
⎞

⎜
⎝
⎛ ==                                        (A1) 

 



Then, we have the equation for 
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subject to the boundary conditions 
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As α → 0, the nonzero solution to the boundary problem (A2) is assumed to tend to solution of the 
limiting problem corresponding to a = 0. The limiting problem is degenerated, i.e., any U(ζ) ≡ C is the 
solution to (A2). But this degeneracy disappears at α > 0. We put 
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where C ≠ 0 is a nonzero unknown constant. Substitu ng (A3) into (A2), we find ti
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whence 
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Substituting ζ = 1 into (A5), we have cosµ = 0. If µ = 1/2π, then C = π/2√2 and boundary conditions 
(A4b) are fulfilled at A= 1/√2. The value V(I) is as usual not determined in this approximation. Taking 
into account the terms O(a2), we find V(1) = 0. 
Hence, at small α 
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The calculated solutions to (A2) at α ≤ 0.5 differ from (A6) less than by 2%. 

We n (ζ, a). According these ote that expressions (A3) and (A5) yield not only an approximation for U = U
formulas, the solution to (A2) is unambiguous at small a, each root of cos µ = 0 corresponds to a branch 
of the solution (existing probably only in a narrow interval of a). The larger C correspond to smaller |W| 
(see (19) and (26)). 

At fixed a each solution to (A2) corresponds to a solution of original problem (13), but different 
solutions have distinct R. We note that α →0 corresponds to R → ∞ according to (27). One can find the 
solution to (13) to be not unique at fixed (large) R. The additional solutions to (13) and a prove of 
possible expansion (A3) will be reported elsewhere. 
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