ELECTRON LOCALIZATION IN CLUSTERS SUBJECT TO A
STRONG MAGNETIC FIELD

A.N. Korshunova and V.D. Lakhno
Institute for Mathematical Problems in Biology, Pushchino, Moscow Oblast 142292

An electron is shown to localize in a strong magnetic field at the cluster with the number of
molecules less than the critical one, which is impossible in the absence of the field. For the
subcritical ammonium cluster with #n=8 and magnetic field H~10 Oe, the electron
photodetachment energy is 10™ eV.
PACS: 36.40.+d, 31.20.Ej, 33.80.-b

1. Introduction

In the present paper we consider properties of a charged cluster of polar molecules in a strong
magnetic field. If the number of cluster molecules is rather large, the cluster can be considered as a
dielectric sphere. Then electron localization at the cluster results from attraction of the electron by the
sphere and formation of the polaron state. This mechanism was considered in [1-3], in particular, to show
the existence of a critical sphere size R, at which the polaron state arises.

Below we demonstrate that a strong magnetic field localizes the electron at the cluster. In particular,
the electron state bound to the cluster is possible for subcritical clusters in the strong field.

2. Cluster in a magnetic field

The electron energy W in the cluster subject to a magnetic field is determined by the Schrodinger

equation
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where u is the effective electron's mass, P is its momentum, 4 is the vector potential, and ¢(r) is the
potential of cluster polarization. According to the polaron model, the latter takes on the form

dv'-c, (2)
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dielectric constants, and c is the constant determined by vanishing the potential outside the cluster. Using
the cylindrical coordinates and symmetrical calibration for the vector potential, 4, = -HY/2, A, = HX / 2,
and 4, = 0, we have
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where p, = C—Z is the effective magnetic length. The eigenfunctions in the right side of (3) are
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expressed in the cylindrical coordinates by
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where m is the projection of the electron orbital momentum onto the magnetic field direction,
n=N+1/2(m—]|ml), and L™, are the Laguerre polynomials. The value 1 can be shown to be positive and m
> -N. For the lowest Landau band with » = N = 0, the wave function (4) is given by
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3. Cluster in a quantizing magnetic field

The potential well produced by the cluster polarization in magnetic field is axially symmetrical.
Hence, m is the quantum number of the problem and m=0 corresponds to the electron ground state. Below

we consider the limiting quantizing magnetic field when 7w, > | W|, where wy = eH/uc is the frequency
of the lowest Landau level. In this limit, the wave function determined by (5) and (6) is the asymptotically
exact solution to problem (1). Substituting (5) and (6) into (1), multiplying equation (1) by 2zpRoo(p), and
integrating it over p, we have the Schrodinger equation for y(Z)
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We integrate (8) over p’ and Z' in the whole space, while over p and Z only inside the cluster. The
constant c is determined by continuity of ¢(Z) at the cluster surface. As it follows from (6) and (8), in the
limit of superstrong magnetic field, as p o — 0, we have
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where [1; is a number of the order of unity. Solving the Schrodinger equation (7) with potential (10) is a
complicated problem. To find the solution, we use a variational approach. Taking the asymptotics
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we use a shallow well e (z) for which |e(51 (z)| < | e ( z)| instead of the potential well e, (z). As it

follows from (10) and (11), we can choose

ep(2)=7 (@)~ (R)], (12
where R i1s the cluster radius.

4. Dimensionless nonlinear cluster equations

Substituting (12) into (7), we arrive at the approximate equations for an electron in the cluster
subject to the quantizing field
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we have instead of (13) the dimensionless equations
v'(Z)+[r2(2)-r2(&, v (2)-v(2)=0. Z|<¢, -
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where
&y =R 2';—|2W| (18)

The electron energy is found from normalizing condition (14). Substituting (15) and (16) into it, we

have
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where

r=[vz)az. (20)



Thus, according to (19) and (20), the electron energy is calculated by integral (20), using the
solution to (17). As it follows from (18) and (19), there is a relation between & and I"
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5. Asymptotic solutions to equations (17)
We consider the case of a shallow well, i.e.,
2
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that corresponds to
&y <<1. (23)
men we nave the followin asymptotics under condition (23) (see Appendix)
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The parameter I" can be directly calculated by (20). Taking into account the small &, we deduce
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where according to (17) we assume the solution to take on the form WZ)= (&) exp(-Z + &), Z > &

in the whole range of Z except for a narrow interval | Z | < & Comparing (24) and (25), we arrive at

r=—. (26)
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Further, using (21) and (26), we find
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which can be transformed into
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As it follows from (16) and (27), the typical electron size r, (the scale factor for dimension-less
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where a, = hz/m0 e” is the Bohr radius.



variable Z ) is expressed by

or by

Next we consider the case of a deep well, when

W] >>

Neglecting x(R) in (13), we find from (17) that

I'->4,as § — .

Thus, in this limit the electron energy is given by
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while according to (16) the typical electron size takes on the form
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6. Numerical solution to problem (17)

Equation (17) can be numerically integrated. It has only one parameter
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The values of " and &) are determined by (21) and by continuity of ¥(Z) at | Z | = &. Figure 1

plots solutions to (17) at various x.
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Figure 1. Solutions to Egs. (17) at different

By the solutions found, we can calculate the total electron energy determined by the functional
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Note that equations (13) result from varying the functional F with respect to wave function y. Using
(15) and (16), we express the total energy
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We also find the effective electron radius
(ry= IZ;(Z(Z)dZ, (40)
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Table 1 lists T, F,I'y, and & at various «. Using (19), (38), and (41) one can calculate the electron
and total energies, as well as the effective electron radius for the tabulated
Figure 2 depicts the dependence of dimensionless total energy || on k. As is seen, there are
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Figure 2. Dependencies of the dimensionless elect-ron |W| / (7r uet13%n 2) (1) and total

F(ﬂzye4/2§h2) (2) energies on the parameter k¥ = ze* uR/ & h*.

Table 1. Numerical parameters of the problem.

50 K r F Fl

4.00 16.02 4.005 -1.33 2773

3.00 12.11 4.039 -133 2.774

260 10.61 4.084 -134 2.779
220 9.198 4.181 -1.34  2.795

2.00 8530 4265 -134 2814
1.80 7.899 4388 -135 2.846
1.60 7313 4571 -1.37 2903




140 6.783 4.845 -139  3.000
1.20  6.323 5269 -143 3.168
1.00 5959 5959 -149 3.465
0.80 5.736 7.170 -1.61 4.020
0.60 5.759 9.598 -1.83 5.182
040 6336 1584 -230 8.253
020 9.013 45.07 -3.80 2282
0.18 9.660 53.67 -4.14 27.11
0.16 10.48 6549 -456 33.02
0.14 11.54 8246 -5.11 41.50
0.12 1298 108.1 -5.84 54.33
0.10 15.00 150.0 -6.87 75.25

0.08 18.05 2256 -840 113.1

two solutions at specified x: The upper branch corresponds to the external states in which the electron
localizes mainly outside the cluster, the lower branch does to the internal states localized inside the
cluster. The minimum value &, =5.71 corresponds to the bifurcation point where these solutions merge,
indicating the minimum cluster size R, at which the electron is bound to the cluster. According to (36),
this size (in angstroms) is equal to

Rmin = ﬂ d T (A) . (42)
T ou

7. Application of the theory to ammonium clusters

We applied the above results to the clusters consisting of polar molecules of (NH3), type. The
experimentally found critical number of molecules in these clusters is n. = 36. For the higher numbers of
molecules the electron is bound to the cluster [4] and localized in it with the state energy
W=(-1.25+2.63n 173 )eV, while at n < n, the electron is delocalized.

According to our results, electrons can be captured by the clusters in superstrong magnetic field
even at n<n.. To estimate the critical number R when the electron is localized, we use the relationship
R =R,n'"” where R, is the effective radius of ammonium molecule. Using data from [1-3] and (42), we
find that n. = 1 for the clusters in magnetic field. Therefore, the electron states are bound to the cluster in
a wide range of the number of cluster molecules from 1 to 36. We estimate the energies of these electron
states and the magnetic field required to bind the electron at the ammonium cluster with n = 8. At R, =
2.85A [1-3], the cluster size is R = 5.7 A. Using £=1.92 and u ~ my [1-3], we find by (38) « =17.5.
According to Table 1, it corresponds to I = 212 and 4 for the upper and lower branches of solutions. We
calculate W~ -107eV by (19), F~ -0.5 x 10™ eV by (41) and r. = 70A by (31) for the upper branch
solutions. The field is quantizing for this branch if it exceeds H ~ 10° Oe.

We also find that W = -2.3eV, F ~ -0.7¢V, and r. =~ 1.3 A for the lower branch. Therefore, it is the
small-sized state, and the continual approximation is not valid to describe this state. For this solution the
field is quantizing only at superstrong values, H ~ 10® Oe.
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Appendix’
Asymptotic solution to dimensionless equations (17) as & — 0.

We denote & = a and put

(=_J, y=Y. u(¢)=ar(ao). (A1)



Then, we have the equation for

Ur(¢)+u()u()-vr()]-a*u(¢)=0, [¢]<1, (A2)
subject to the boundary conditions
U(l)=—aU(1), U(-1)=aU(-1).
As o — 0, the nonzero solution to the boundary problem (A2) is assumed to tend to solution of the

limiting problem corresponding to @ = 0. The limiting problem is degenerated, i.e., any U({) = C is the
solution to (A2). But this degeneracy disappears at a > 0. We put

U(¢)=C+av(¢)+0(a?), (A3)

where C # 0 is a nonzero unknown constant. Substituting (A3) into (A2), we find

v'(¢)+2cC?v(¢)-r(1)]=0, (Ada)
v()=-c, v'(-1)=cC, (A4b)

whence
V(¢)=dcos(us)+V(1), wp?=2C* (A5)

Substituting ¢ = 1 into (A5), we have cosu = 0. If p = 1/27, then C = 1/272 and boundary conditions
(A4b) are fulfilled at A= 1/72. The value ¥(I) is as usual not determined in this approximation. Taking
into account the terms O(a’), we find V(1) = 0.

Hence, at small o

T a T
U(§)~ﬁ+ﬁCOS(E§). (A6)

The calculated solutions to (A2) at a < 0.5 differ from (A6) less than by 2%.

We note that expressions (A3) and (AS5) yield not only an approximation for U = U({, a). According these
formulas, the solution to (A2) is unambiguous at small a, each root of cos 4 = 0 corresponds to a branch
of the solution (existing probably only in a narrow interval of a). The larger C correspond to smaller |IV]
(see (19) and (26)).

At fixed a each solution to (A2) corresponds to a solution of original problem (13), but different
solutions have distinct R. We note that a —0 corresponds to R — o according to (27). One can find the
solution to (13) to be not unique at fixed (large) R. The additional solutions to (13) and a prove of
possible expansion (A3) will be reported elsewhere.
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