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POLARON STATES IN UNCHARGED MOLECULAR CLUSTERS
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A continual model for the cluster of polar molecules is studied. Based on the
assumption of the polaron nature of solvated electron, the authors describe
experimental data on the Na(H,0), and Na(NH;), cluster ionization.
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1. Introduction

Progress in experimental studies of molecular
clusters allows recognition of the microscopic na-
ture of electron solvation in condensed media of
polar molecules. Currently, experimental data
are available on electron photodetachment from
charged clusters of water (H,0); and ammonia
(NHs); [1] and on ionization energy of neutral
clusters Na(H,0), and Na(NH;), with sodium
impurities [2]. Charged ammonia clusters are
found only at n = 35. In contrast, water
clusters retain an excessive electron at a virtu-
ally arbitrary number of molecules. The data on
neutral clusters are available for water at n < 20
and for ammonia at n < 35. The experiments on
electron photodetachment from neutral ammonia
clusters show that their electron is solvated
and its energy tends to the electron energy in so-
lution as the number of molecules increases. As
distinct from ammonia clusters, the electron en-
ergy in a neutral water cluster becomes constant
at n >4, like that in a hydrated electron.

“The above experimental data represent rich
material for successive understanding of these phe-
nomena in the framework of a common mathe-
matical model. According to the conventional
approach, the bound electron state in a polar
medium is conditioned by local polarization of
dipole moments of medium molecules, induced
by the proper electron itself. Based on the concept of
self-consistent electron state and polar continual
medium, mathematical models. of an excess
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electron in the cluster were constructed [3,4].

- The model in {4] assumed no cavity formation

for the electron. The calculations confirmed the
critical size of the charged cluster and had good
agreement with experiments. The critical clus-
ter size was found to relate closely to the
surface electron state observed experimentally.
This surface state of the excess electron in the
cluster was first predicted in the quantum molec-
ular dynamics calculation [5].

An attempt to calculate the neutral cluster
was undertaken in [2] based on solving the
one-electron linear Schrédinger equation with a
model potential. It allows one to describe sat-
isfactorily the electron state in a neutral clus-
ter only at n < 4. According to [4], a greater
number of cluster molecules causes two-center
localization of independent cation and electron.
In the present work, to model the neutral clus-
ter, we develop an approach based on the Pekar
polaron theory [6] and the works [4,7—9] solv-
ing the nonlinear Schrédinger equation. As we
show below, the available experimental data can
be described within the concept of one-center lo-
calization of a cation—electron pair in the cluster.

2. Mathematical model
A cluster of polar molecules represents a
dielectric polarizable sphere Q of radius R in
vacuum. An alkali metal cation corresponds to
the point charge Ze in the sphere center. The
effective surface charge at the cluster bound-
ary is zero. The electron states in the cluster -
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are considered the states of a polaron bound by the acceptor potential. The electron is quantized and has certain
effective mass m = ,u.mo, where mj, is the electron mass in vacuum,

_— Azb(r) +e ( o + llf(r’)lr dr’' + a) P(r)+ W1/J(r) =0, ' 7(1)

f |¢(r)| dr=1, ‘ )

r|

E 1=l — ¢t , (3)
where &g, € =7n?, and & are respectively the static, high-frequency (n is the refractive index), and
effective dielectric constants in the cluster. Outside it, in vacuum, € =€, =1 and £=0. Inside the
cluster the quantity a takes on a certain constant value governed by continuity of the whole potential
at the cluster boundary, while a is zero outside the cluster. Thus, the polarization potential mduced
by the distributed electron charge vanishes at this boundary.

Problem (1), (2) is nonlinear in the wave function ¥(r) and the electron energy W. At R=0
equation (1) transforms to an ordinary equation for the atomic hydrogen electron. At R=oo the
problem transforms to that of the F-center in a homogeneous polar medium [8]. The case of Z =0
corresponding to the charged cluster is considered in [4]. The case of Z = 1 corresponds to the neutral cluster.
Hereafter, Z is considered a continuous parameter of the model.

Expression (3) for the effective dielectric constant is derived by Pekar [6] in the double adiabatic
approximation: the electron motion is much faster than dipole orientational oscillations of medium
molecules, but slower than characteristic oscillations of internal electron states of medium atoms.
When studying the model properties, £ is considered as a parameter.

Below we present the spherically symmetrical electron states in problem (1), (2), which correspond
to the concept of a one-center cation and electron localization in the cluster.

3. Solution method

The solution method is based on the approach used in [4,7-9]. Following [9], the spherically
symmetrical solutions to the Schrodinger equation (1) are found by solving the boundary problem

'+—--1)¢=0, ‘ ~
gz ) 0 <z < Zg; f"+(§—1)£=0, T > Zg; (4)
17”+ 0
£(z) € C‘(O, ), £(0)=¢(0)=0, n(0)= fo- 7(zx) = 4. (5)

Here the electron energy is expressed via the integral of solution to problem (4), (5), as

W] = 2’"°e :r-l I= /g’(z)dz.
0

The eigenparameters § and z, of problem (4), (5) are the dimensionless cation charge and cluster
radius. The relevant dimensional values depend on the solution as

K 7 I'z

2mee? p

Differential equations (4) represent nonlinear “polaron” equations on the mterval (0,z) and a linear
equation of a hydrogen atom on the interval (x,, o). '

zZ=11", R=
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Let us consider the method of solving the
boundary problem (4), (5). By substituting the
variables & = p€, the equation for £, linear and
homogeneous at £ > T, is reduced to the Riccati
equation

p+p+i/z-1=0.

Solution of this equation with the initial con-
dition p(00)=—1 defines a one-parametric fam-
ily of the solutions §(z) exponentially decreas-
ing at infinity. Thus, the boundary condition
£(c0) =0 can be numerically transferred to the
cluster boundary. We consider two boundary
conditions at z=z, as equations in two un-
knowns £'(0) and 7'(0) having no initial data
at the left. Such a solution method is called shooting.
To find a family of solutions corresponding
to the same physical charge Z, let us take three
" equations: two boundary conditions at z=2,
and the condition §T~! = const in the four un-
knowns {¢'(0),7'(0),§,zx}. In general, the lat-
ter define a curve in four-dimensional space, which
can be numerically reproduced by the CURVE
code [10] based on an algorithm of moving along
a curve. ,

4.

The nonlinear boundary problem at each set
of the parameters {g,Zx,€0} exhibits multiple
solutions, qualitatively different in the number
of nodes £(x). Figure 1 displays the first two so-
lutions in physical variables: the electron den-
sity distributions and corresponding potentials. As is
seen from the figure, the ground-state electron
(curve 1) is virtually localized inside the cluster,
while the first excited state (curve 2) is strongly
diffusive: the electron density distribution ex-
tends far beyond the cluster.

Figure 2 shows the projections of some curves
found numerically according to the above
method. Every curve defines a family of solu-
tions to the initial nonlinear Schrdinger equa-
tion at fixed values of all parameters except for
the cluster radius. v :

As a possible dependence of electron energy on
the cluster radius, Fig.3 shows several families
of solution. At Z =0, there are reproduced the
results for the charged cluster [4], demonstra-

Properties of the model
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Figure 1. Electron density distributions (1, 2) and
the potentials (I', 2') corresponding to ground (/, /) and
excited (2, 2') electron states in the cluster at Z&=2
and £g = 20. The dashed line is the cluster boundary.
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Figure 2. Dimensionless charge 7—radius zx re-
lation furnishing Z£=0.1 along curves 1,1’ and
Z8=2.0 along curves 2,2’ at g5=20. Calculati-
ons 1,2 and 1',2’ correspond to the zero and first
modes of wave functions, g=2,4,... are the eigen-
values of hydrogen atom dimensionless equation (4).

an S-shaped dependence of energy on radius ap-

- pears due to formation of a weakly bound hydrogen-

. ting its critical size. At arbitrary small Z,
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like electron state at the cluster. Within a
certain radius range three electron states coex-
ist, differing by the electron density distribu-
tion in the cluster (Fig.4). Note that the values
Z& < 1 for the neutral cluster in vacuum are not
physical. :

The possible dependencies (Fig.3) of electron
energy on the cluster size can be explicitly inter-
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Figure 3. Dependencies of the ground electron en-
ergy state on the cluster radius at Z£ indicated at
curves and g9 =80 for water. The calculation at
Z =1 and £=1.012 qualitatively corresponds to the
constant ionization potential of Na(H30)m clusters.
The value u=0.7 quantitatively conforms to the hy-
drated electron energy 3.17eV [2].

preted within the model. The electron motion
is controlled by two competing factors: a bond
with positive charge and a self-consistent inter-
action with medium polarization. As the cluster
radius increases, the bond contributes less to
the electron energy due to screening of charge
potential by the polar region, while the interac-
tion does more. Therefore, the electron energy
can vary nonmonotonically. ZZ can increase due
to the charge Z increase (bond strengthening)
or due to £ increase (weakening the feedback in
electron-polarization interaction).

The electron energy W at greater R is well
approximated by the linear dependence

~9 ~
Wi”- = A(e, Z8) + B, zaa-l%. (6)
In particular, at Z =0, the values A and B are
independent of € and . Relationship (6) can be
used to derive a dimensional cluster equation for
the real physical system. Then the parameters u
and £ of polaron state should be preassigned as
well as the dielectric constant €. Assuming u to
be independent of the polar region size (at least
in large clusters), we conclude from (6) that elec-
tron energy variation with cluster radius is qual-
itatively defined by the &, while g merely nor-
malizes the asymptotic energy value. Therefore,

Polaron States in Uncharged Molecular Clusters

47§r2w2(r)(x10); el18%u, eV
i

-7 1 . 1 1

0 10 15 rulé A
Figure 4. Electron density distributions (/—-3) and
the potentials (1'—-3’) relevant to internal (1,1'),
surface (2, 2'), and external (9, 3’) electron states in

the cluster at Z€=0.1 and g3 =20. Dashed line is
the cluster boundary.

effective parameters are unambiguously found
by comparing (6) with the dimensional cluster
equation approximating experimental data.

5. Comparison with experiment

Figure 5 shows the calculated and experimen-
tal data for neutral ammonia clusters. The pa-
rameters are close to those chosen for the com-
parison with charged ammonia clusters, based
on the analysis of the dimensional cluster equa-
tion [4]. Asis seen from Fig. 5 in the case of neu-
tral clusters, the calculated dependence approx-
imates well the experimental data at small n.
The calculated dependence interpolated to a
condensed medium yields 1.5eV which conforms
to the energy of electron solvated by liquid
ammonia [2]. The electron state in the ammo-
nia cluster of radius 10 A is plotted in Fig.1.

The experimental data for water can be in-
terpreted via Fig.3. The dependence at which
the energy is constant beginning from a certain
radius , arises only at £=1.012. The reasonable
values €, = 1.77 and &, = 80 for water provided
that (3) is valid yield £=1.81. At this value
an agreement with the experimental data for
charged clusters [4] is achieved in the framework
of a dimensional equation. The value & = 1.012 re-
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Figure 5. Dependence of the ground-state electron
energy on the cluster radius at the values & =22,
£=2, p=1 relevant to ammonia [4]. The exper-
imental Na(NH3), cluster ionization potentials are
plotted for n<35 [2]. The dot sizes correspond
to experimental errors. The arrows at the ordinate
axis indicate the energies of hydrogen electron and
sodium 3s-electron. The upper scale is the number
of cluster molecules. The relationship between the
number of molecules and the cluster radius is given
by R= R,n!/3, where R, =2.85 A [4] is the effective
radius of one molecule.

quires one to accept &, = 1. In this case the elec-
tron oscillation frequency is close to that of in-
ner atomic shells. Within the model we conclude
that the solvated electron strongly interacts with
polarization induced by it in the neutral wa-
ter cluster as compared to the charged one.
The experimental data on charged and neutral
clusters, extrapolated to a condensed medium,
yield electron energies of 3.3 and 3.17eV, re-
spectively [1,2]. In spite of these close figures,
the calculated electron states significantly dif-
fer. The average radii calculated by the electron
density distribution are 1.7 and 3.17A for the
charged and neutral clusters.

6. Discussion

Thus, we attained a quantitative agreement
with the experimental data for small ammo-
nia clusters within the continual model. The
structures of the small clusters considered seem to
weakly affect the solvated electron’s behavior, which
is shown by the absence of pronounced dimen-
sional effects. From this viewpoint, the replace-

ment of a cluster by an effective dielectric
sphere is sufficiently justified. As a whole,
the problem of the model’s applicability re-
mains debatable. Comparison with experiment
suggests the model is valid also beyond
the initial assumptions accepted in the polaron
theory [6]. : ]

An attempt to fit the experimental data for
neutral and charged water clusters to the con-

“sidered model shows the electron states differ

significantly in such clusters. Validity of this
conclusion is related to the model’s applicability
to hydrated electron states in the cluster. '

Finally, we note that the nonmonotonic and
S-shaped dependencies in Fig. 3 (corresponding to a
nonphysical region of cluster parameters in vac-
uum) in principle can be realized if the cluster is
built into a mnonpolar matrix with sufficiently
high dielectric constant. Possible physical con-
sequences of these dependencies are also beyond
the scope of this paper.
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