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Abstract - The dependence of the matrix element of probability of interpreting electron 
transfer on the mutual orientation of the donor and acceptor centers and on the distance 
between them was calculated. The calculation was performed under the assumption that the 
main channel for this process is the electron transfer via collective excitation of a polaron 
nature, similar to electron solvation. The results obtained agree with the experimental data and 

indicate a no exponential behavior of this dependence at transfer distances shorter than 20Α . 
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INTRODUCTION 

 
Electron transfer between globular proteins plays a fundamental part in the vital activity of 

biological organisms, including such processes as photosynthesis or oxidation-reduction reactions in 
mitochondria. One of the most intriguing problems of electron transport is how an electron can be moved 

over long distances about 10-30  [1]. Simple calculations show that the probability of direct electron Α
transfer from donor to acceptor over such distances is negligible. A number of models have been put 
forward, and numerical computations have been carried out, being based on the "super exchange" 
hypothesis, according to which electron transfer over long distances occurs through intermediate electron 
states. In most of these approaches, either the electron levels of a single atom [2] or the transfer along 
chemical bonds of certain types [3, 4] have been considered as intermediate states. Meanwhile, it is 
known that the polypeptide chain and the surrounding water molecules influence, as a solvent, the 
electron states at the donor or the acceptor, thus modifying them substantially [5]. On the basis of this 
fact, we have proposed a mechanism of transfer via a collective electron excitation throughout the entire 
protein macromolecule [6]. We believe that this mechanism is most likely to be realized in electron 
transfer between globular proteins in solutions. In this case, the protein periphery contains a large number 
of polar groups, which can participate in formation of the excited state mentioned. On the other hand, 
there is a great body of experimental data on electron transfer between globular proteins (see [7, 8] and 
references therein), but no theoretical calculations of the matrix element for such transfer are available. 

The purpose of this work was to compute the matrix element for electron transport between 
globular proteins on the hypothesis that this transport occurs via collective electron excitation. 

 
MODEL AND CALCULATION METHOD 

 
Basic provisions of the model. According to [9], the rate K of electron transfer between globular 

proteins in aqueous solution is 
K = SKa Het

2 2π /ћ (FC) ,                                                      (1) 
 

where S is the steric factor, Ka is the equilibrium constant, Het  is the matrix element of interaction, and 
FC is the Franck-Condon factor. 

If electron transport proceeds via the super exchange mechanism, the matrix element is 



 
Fig. 1. (D) Donor, (A) acceptor, and (EES) excited electron state. Hems can be oriented along 

the y or the z axis. 
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where Ea , Ed, and Em are the electron energies of the acceptor, the donor, and the intermediate electron 
state through which the transfer takes place, respectively; and Tma and Tmd give the relationship between 
this excited state and the electron states at the donor and the acceptor, respectively. For long-distance 
transfers, this relationship is written in terms of the integral I(R) of overlap of the electron wave 
functions: 

Tmd ~  Em I(R) = Em ∫ ϕd (r) ϕm (r-R) dr ,                                                  (3) 
 

where ϕm(r –R ) and ϕd(r) are the electron wave functions of the excited intermediate and ground states of 
the donor, respectively; and R is the distance between their distribution centers. Our purpose was to 
calculate the dependence I(R), since it is I(R) that determines the dependence of transfer on the distance 
between the hems and their mutual orientation. 

Below, we assumed that the excited state is located symmetrically with respect to the donor and 
acceptor centers (Fig. 1). The heme wave function was modeled by a normalized function distributed 

uniformly within an 11.35 × 11.35 × 5.35Α  potential box. The overlap integral was studied versus both 
the distance and the heme orientation: the dependences Iy(R) (the hems are parallel and lie in the same 
plane) and Iz(R) (the hems are parallel and lie in different planes as in Fig. 1) were considered. The effect 
of the asymmetry of the excited electron state position with respect to the donor and the acceptor, and the 
internal distribution of the electron density over heme will be investigated elsewhere. 

 
Fig. 2. Radial dependences of the atomic wave functions for s electrons at the heme: (1) H, 

(2) N, (3) C, and (4) the metal atom. (5) Radial dependence of the wave function of the 
excited state. 

 
Excited electron state. We assumed that transfer occurs via a collective electron excitation whose 

nature is similar to formation of a solvated electron in liquid or a polaron in crystal lattice [6]. Spherically 



symmetrical states were examined. The wave function of such a state was approximated by the power 
series [10] 

ϕ(r) = Cnorm exp [- 0.4994r] × (1.0248 + 0.4922r + 0.1168r 2) ,                                (4) 
 

where Cnorm is the normalizing factor, and r is the distance expressed in angstroms. The error of this 
approximation does not exceed 0.3% for the function and 0.03% for the energy parameters. Note that the 

characteristic size of the state explored is on the order of 3-5Α , which corresponds to the typical radius of 
a solvated electron. Figure 2 shows the atomic wave functions for s electrons at heme and the wave 
function of the excited state. It is seen that the size of the latter function is much larger than the sizes of 
the functions of the electron states localized at heme atoms; therefore, the potential-box approximation for 
the heme function is quite acceptable. 
 
Integration method. The problem was reduced to calculating the space integral with respect to a single 
variable. This integral was found by the nested Gauss-Legendry quadrature formulas with ten nodes. The 
algorithm included sequential computation of single integrals. The duration of calculations by this 
algorithm with an IBM PC 486 (100 MHz) was several seconds. 

 
Fig. 3. Logarithms of the overlap integrals ln[Iy(R)] (rhombi) and ln[Iz(R)] (squares) versus 

distance R( ). The notation is the same as in Fig. 1. Α
 

 
 

Fig. 4. Derivatives of the logarithms of the overlap integrals     (1) -d(ln[Iy(R)]/dR = βy /2 and 

(2) -d( ln[Iz(R)]) /dR = βz /2 versus distance R(Α ). The notation is the same as in Fig. 1. 



RESULTS 
 

Figures 3 and 4 present the results of calculations of the overlap integrals Iy(R) and Iz(R), and also 
the parameter β = -2d (ln [I(R)]) / dR for two heme orientations shown in Fig. 1. 

These calculations lead to the following conclusions: 
 

(1) the asymptotic behavior of the dependences I(R) with increasing distance is exponential; 
 

(2) in the range d = 2R =10-20 , these dependences differ substantially from exponential Α

functions, with the parameter b varying from 0.3 to 0.8Α -1; 
 

(3) there is a weak dependence of the overlap integral on the heme orientation with respect 
to the excited state: this integral can change 2-3 times. 

 
 

These results agree well with the experimental data [11] according to which the parameter  

Β ~0.7-1.4 -1Α . The scatter can be due to both the nonexponential behavior of I(R) at transfer distances of 

10-20 , and the steric factors related to the mutual orientation of the donor and the acceptor. Α
 

ACKNOWLEDGMENT 
 

This work was supported by the Russian Foundation for Basic Research, project no. 95-04-11432. 
 

REFERENCES 
 

1.  Miller, J.R., Advances in Chemisry, Bolton, J.R., et al., Eds., Washington: ACS, 1991, vol. 228. 
2.  Siddarth, P. and Marcus, R.A., J. Phys. Chem., 1993, vol. 97, no. 50, p. 13078. 
3.  Onuchic, J.N., Beratan, D.N., et al., Annu. Rev. Biophys. Biomol. Struct., 1992, vol. 21, p. 349. 
4.  Regan, J.J., Risser, S.M., Beratan, D.N., and Onuchic, J.N., J. Phys. Chem., 1993, vol. 97, no. 

50, p. 13083. 
5.  Treutlein, H., Schulten, K., et al, Proc. Nad. Acad. Sci. USA., 1992, vol. 89, p. 75. 
6.  Lakhno, V.D. and Chuev, G.N., Biofizika, 1997, vol. 42, p. 313. 
7.  Dixon, D.W., Hong, X., and Woehler, S.E., J. Amer. Chem. Soc., 1990, vol. 112, p. 1082. 
8.  Oiao, T., Simmons, J., et al., J. Phys. Chem, 1993, vol. 97, no. 50, p. 13089. 
9.  Marcus, R.A. and Sutin, N., Biohim. Biophys. Acta., 1985, vol. 811, p. 265. 
10.  Dedus, F.F., Ustinin, M.N., and Tereshchenko, S.P., Approximation of Solutions of Nonlinear 

Self-Consistent Problem of Polaron and F Center, Preprint of ONTI NTsBi, Pushchino, 1987. 
11.  Moser, C.C., Keske, JM., et al., Nature, 1992, vol. 355, p. 796. 

 


