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Abstract. The solutions of the nonlinear Schrodinger equation of an electron in a cluster
placed in a strong magnetic field were studied. It was shown that there is a minimal cluster
radius at which a localized solution of the one-dimensional nonlinear Schrodinger equation
exists. With larger cluster radii, there emerge two, three, and more solutions of the equation.
For the solutions found, the energies, the total energies, and the electron radii were
numerically calculated. The possibility of experimentally checking the results obtained is
discussed.
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1. INTRODUCTION

We have earlier [1] considered the states of an electron in a cluster consisting of polar molecules in
a superstrong magnetic field. To describe these states, a polaron model has been used. According to[1], a
superstrong magnetic field leads to the stabilization of the electron states in the cluster and to the
possibility of formation of electron states where the number of molecules is smaller than the critical one.
The approximate equations for an electron in the cluster in the limit of a superstrong magnetic field are

[1]

2
0@ - R @)+ ;—';‘ Wy(Z) =0,

1 (Z) +
1z <R, (1.1)

, W
(Z) + :2 1(2)=0. |Z>R.

Here, e and 7 are the electron charge and weight, respectively; A is Planck's constant; d is the effective
dielectric permittivity of the cluster; W is the electron energy; and R is the cluster radius. Equations (1.1)
are the nonlinear Schrodinger equations for the wave function x(Z), which obeys the norming condition

TXZ(Z) =1 (1.2)

Earlier [1], only one of the solutions of equations (1.1) has been investigated in detail, namely, that giving
the lowest electron state in the cluster. The purpose of this work was to examine the properties of other
solutions of problem (1.1) and to consider their role in studying the electron states in the cluster.

2. BASIC RELATIONS

Among the most important characteristics of electron states in clusters are the electron energy W
determined from equation (1.1) and the total energy F of an electron in the cluster [1]:
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The energy and the total energy of an electron in the cluster can be conveniently computed as in [1], viz,,
through changing from (&) and Z to new variables defined from the relations
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x(Z) —\/ 2 y(z), Z-= /—2H|W| : (2.2)

Then, instead of (1.1), we obtain
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In terms of these dimensionless variables, proceeding from the norming condition (1.2) and relations
(2.2), the electron energy can be derived:
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From (2.1) and (2.2), the total energy F is found:
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Another important characteristic of electron states in a cluster is the effective radius of a state:
T2
<r>=[zy*(2)dZz, (2.8)
0

which can be calculated with the use of (2.2) and (2.8):
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Thus, the computation of the energy, the total energy, and the radius of the states is related to solving
equations (2.3).



states tend to infinity as R — oo.

Knowing the asymptotic behavior of the solutions of the reduced problem as a — 0 and as a — o, one
can predict the asymptotics of (¥) when R — . We shall make only one note. Let n > 1, and let the
internal states be considered. Then, as R — «, W — const, and substitution (2.2) is changed into a scaling
transformation that is independent of R. In this case, the solutions take the form of several peaks (with

almost invariable heights and shapes) that drift apart with increasing R. Evidently, (r) — .
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6. DISCUSSION

Currently, there is no experimental data on the properties of charged clusters in strong magnetic

fields. The condition of quantizing magnetic field: 7 ®, S|W , where @, is the cyclotron frequency, is

obeyed more readily by the branches of the found solutions that describe the external states. For example,
according to [1], the external electron state corresponding to the solution with » = 1 can be observed at
R < R.in fields with HS10° Oe. Here, R, is the least possible cluster radius in the absence of magnetic
field. Therefore, below, we dwell briefly only on the external states with n > 2.

In a (NH;)n cluster, the bound states with n = 2 are possible only at R > 10.7 A (see Fig. 2, the
values of the physical parameters are the same as those in [2]). As noted, the absolute values of the
energies and the total energies of the external states with » = 2 are higher than those at » = 1, and a



(2) The relative positions of maxima and minima of a solution on the segment [-a, a] are
independent of a. For example, at n = 2, there are one mini-mum at z = 0 and two maxima at z ==+2/3a.

3) The peak-to-peak amplitude of a solution is independent of ¢ and n:
M, (a) = m,(a)=~2.

(4) As a —70, the amplitude M, (a) at a maximum increases without limit:
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(5) As a — oo, the solutions with # = 1 tend to the "soliton" solution

y(z) = 2 : (4.2)
coshz

The solutions with n =2, 3, ... take the form of several peaks, each resembling the graph of function
(4.2), which are separated by portions where the solutions are close to zero.

5. WHAT IS KNOWN ON THE SOLUTIONS OF INITIAL PROBLEM (1.1)?

Numerical computation of A enables one, at given a and #n = 1, 2, 3, ..., to find the normalized
solution +,(E, a) of equation (1.1), the eigenvalue Wy (a), and the radius R,(a). In this computation, the
following results were obtained.

(1) The function R,(a) has a single minimum; as @ —0 and as @ — oo, R,(a) increases, tending to
infinity. Thus, at large R values, for each n there are two types of states, one of which corresponds to
large a; and the other, to small a.

(2) There exists a critical value R = Rin. At R < Ryin, problem (1.1) has no solutions. At all
R > Ryin, there are two solutions with » = 1 (i.e., possessing one maximum). One of these solutions
describes the "internal" states [the function Y ,(Z) is mainly localized within the region Z < R], and the
other characterizes the "external" states. At large R, the internal and external states correspond to large
and small a, respectively.

When R — oo, the solutions of the first type tend to soliton solutions [derived from (4.2) by a
scaling transformation], and their total energy tends to a constant value, whereas the maxima of the
solutions of the second type diminish, and their total energy approaches zero.

(3) At Ruin® > R > Ruin, two different solutions, each having two maxima, become possible; and on
the interval Rpuim® < R < Ry the initial problem has four solutions. At R > Rmi,,(3), solutions with n =3
arise, etc.

(4) Atagiven R, in a rise in n, the absolute value of the energy of the internal states decreases, and
that of the external states increases. In Fig. 2, the energy F
2 4 2
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(5) Figure 3 presents the radii (r) of the electron states for various solutions of problem (1.1) as

dependenton R. Atn =1, for R — oo, the radius of the internal state tends to a constant value, and that of
the external state rises, tending to infinity. For the states with n > 1, the radii of both internal and external



3. ON THE RELATIONSHIP BETWEEN THE
INITIAL AND REDUCED PROBLEMS

The transition from the initial problem (1.1) to the "reduced" one (2.3) is not only a mere
(conventional) introduction of dimensionless variables: transformation (2.2) depends on the eigenvalue W
to be found. At a given R, for each of the solutions of equation (1.1) that decreases as Z. — <o, solution of
equation (2.3) at a certain a. And vice versa, for each (decreasing) solution of reduced problem (2.3) at a
given a, there is a corresponding (normalized) solution of the initial problem at a certain R. To find this
solution, one needs to calculate the integral A and the W value from (2.5), and, next, compute R from
(2.4).

Thus, there is an exact correspondence between the set of all (normalized) solutions of initial
problem (1.1) at various R and the set of all solutions of reduced problem (2.3) at various a.

4. WHAT IS KNOWN ON THE SOLUTIONS
OF THE REDUCED PROBLEM?

The analytical investigation of problem (2.3) (see [2]) leads to the following conclusions.

(1) At any positive a, this problem has an infinitely large (denumerable) number of solutions, with
the nth solution possessing # maxima (Fig. 1) and having the form of a segment of a periodic function
with the period
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stronger magnetic field is necessary for them to be observated. On the other hand, the external states with
n =2 are more stable and more easily observable at finite temperatures. The main difficulty in observing
the states with » > 2 is that they are possible only in clusters with R > R, and in this instance, bound
states may occur in the absence of magnetic field as well [3-6].

In conclusion, let us note that the studied equations (1.1) are among the simplest nonlinear
SchrOodinger equations. We hope that the results obtained can be useful for solving other problems as
well. At the same time, it should be emphasized once again that the physical pattern described follows
from the analysis of equations (1.1), which themselves are approximate. The question of how this pattern
can change after the initial problem will have been solved exactly (see [1]) is the subject of our further
investigations.
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