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Abstract. Numerical simulation of the photoexcited electron states formation in water
under the action of the ultraviolet range laser irradiation is carried out on the basis of
the polaron model with a time-dependent calculation of the hydrated electron absorption
band width. This framework is shown to reproduce well the experimental data on the
light absorption by the hydrated electron in polarized water. Effectiveness of parallel
implementation is tested on the HybriLIT cluster.

1 Introduction

The theoretical and experimental study of the solvated electron is motivated by its wide applicability
to the theoretical explanations of complex processes in chemistry, biology and quantum physics [1–3].
For the numerical study of the hydrated electron, we start with the polaron model formulated in [4].
The numerical method and parallel computer code for solving the respective system of nonlinear par-
tial differential equations, has been developed in [5, 6]. In [7], the results of numeral simulation of the
hydrated electron formation process were shown to be in a reasonable agreement with experimental
data from [8] on the absorption of the light in the polarized water. In this contribution, the model
is extended to include time-dependent calculation of the hydrated electron absorption band width.
Numerical simulations within the frame of the advanced model provide a noticeable improvement of
agreement between experimental data and theoretical results in full range of time. Also, the results of
methodical calculations demonstrating good efficiency of the parallel implementation on the basis of
the partition algorithm [9] are presented.

2 Mathematical model and numerical approach

In the frame of the polaron model, the hydrated electron state is described by the following equations
[4, 7, 10]:

i�Ψ̇(�r, t) = − �
2

2m
∆Ψ(�r, t) − eΦ(�r, t)Ψ(�r, t), (1)

∆Φ(�r, t) = θ(�r, t), (2)
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1
4πω2c

θ̈(�r, t) + γθ̇(�r, t) +
1

4πc
θ(�r, t) + e|Ψ(�r, t)|2 = 0. (3)

where m is the effective electron mass, c = ε−1
∞ − ε−1

0 , ε∞ and ε0 are the high-frequency and static
constants, e is the elementary charge, ω is the frequency of optical polarization medium oscillations,Φ
is the potential appearing during the polarization process, θ describes the density of polarized charge
induced by the electron. The relaxation (friction) γ is determined by the coefficient related to the
dielectric relaxation time τ by the expression γ−1 = ω2τc. Expanding the functions Ψ(�r, t) Φ(�r, t),
and θ(�r, t) in spherical harmonics, restricting our consideration to the spherically symmetric case,
and coming to dimensionless variables, we obtain the following system of spatially one-dimensional
partial differential equations with respect to the radial components ψ(r, t), ϕ(r, t) and Θ(r, t) of the
functions Ψ,Φ and θ: 

[
i2m̄
∂

∂t
+
∂2

∂x2 + 2m̄
r00

ε̃

ϕ(x, t)
x

]
ψ(x, t) = 0,

∂2

∂x2ϕ(x, t) = Θ(x, t),
[
∂2

∂t2 + γ̄
∂

∂t
+ ω̄2
]
Θ(x, t) = −ω̄2 |ψ(x, t)|2

x

. (4)

The boundary conditions have the form:

ϕ(0, t) = ϕ′(∞, t) = 0, ψ(0, t) = ψ(∞, t) = 0, Θ(0, t) = Θ(∞, t) = 0. (5)

Here, m̄ = 2.692, γ̄ = 2.145, and ω̄ = 1 are the dimensionless parameters of the effective mass of
the hydrated electron, the relaxation (friction), and the frequency; ε̃ = 1.81 is a constant coefficient;
r00 = 164.64 is a scaling factor. The relations between the dimension and dimensionless variables are
given in [7, 10].

For numerical solution, the system (4) is replaced with that of difference equations on a uniform
discrete mesh in the coordinate x and time t. We employ the algorithm described in [5, 10] making it
possible to sequentially calculate, at each time step, the solutions Θ(x, t), ϕ(x, t), ψ(x, t) at the x-nodes
of the discrete mesh under given initial condition ψ(x, 0). The MPI/C++ parallel implementation of
this scheme on the basis of partition algorithm [9] has been developed in [10, 11].

3 Numerical results
To reproduce the experimental values of the intensity of light absorption by a hydrated electron, we
chose the initial condition of the wave function ψ in the Gaussian form with parameter σ which is
varied to reproduce, in the computer simulation, the time dynamics of the light absorption by water.

The light absorption I(t) is calculated as follows [4]:

I(t) =
4Ω2γ2

s(
W(t)2 −Ω2)2 + 4Ω2γ2

s

, (6)

where γs is the width of the absorption band of the hydrated electron and Ω denotes of the light
frequency of a scanning laser at which the light is absorbed by the hydrated electron.

In [7], we fixed γs to the constant value γs = 0.38 eV. The model provided a reasonable agreement
with the experimental data except for the region of zero and small time, where a noticeable discrepancy
between numerical and experimental data was observed [7, 10]. Here, γs(t) at each step of time is
calculated as follows:

γs(t) =
√
�ωkBT

√
2 ln 2

√
a(t), a(t) =

∫ rmax

0
dr
[∫ r

0
dr′
∣∣∣ψ(r′, 0)

∣∣∣2 −
∫ r

0
dr′
∣∣∣ψ(r′, t)

∣∣∣2
]2
, (7)
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Figure 1. Numerical simulation of the light absorption by a hydrated electron for experimental data [8] derived
at light frequencies of the scanning laser Ω = 1.918 eV (left) and Ω = 1.512 eV (right).
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Figure 2. Same as Fig. 1 for experimental data [12] at Ω = 1.378 eV (left) and Ω = 1.305 eV (right).

where T is the absolute temperature, kB is the Boltzmann constant. Results of the simulations are
given in Fig. 1 and Fig. 2 in comparison with the experimental data from [8] and [12], respectively.
Corresponding values of Gaussian parameter σ are given in the Table 1. It is seen that the modified
approach with time-dependent calculation of γs ensures good agreement with the experimental data
over all the range of the spectrum.

Table 1. Values Ω and fitted values of the Gaussian parameter σ providing good agreement of numerical results
with experimental data from [8, 12].

Reference [8] [8] [12] [12]
Ω 1.918 1.512 1.378 1.305
σ 5.750 4.500 3.000 6.500

Methodical calculations with different number of computing nodes have been made on the
heterogenous cluster HybriLIT (Laboratory of IT, Joint Institute for Nuclear Research, Dubna,
http://hybrilit.jinr.ru/en/) with 2 · 106 steps in time. The execution time versus the number P of par-
allel computing nodes is shown in Fig. 3 (left panel) to demonstrate the effectiveness of the parallel
C++/MPI code. It is seen that the execution time is decreasing hyperbolically while P ≤ 12. In the
left panel of Fig. 3, the maximal acceleration is given versus the number of x-nodes.
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Figure 3. Left panel: dependence of the execution time on number of parallel MPI-processes for the cases of
5000, 10000, 15000, and 20000 x-nodes of the discrete grid. Right panel: Maximal acceleration in dependence
on number of x-nodes. Calculations on the HybriLIT cluster (Dubna).

4 Summary

We have found that the polaron model with time-dependent calculation of γs provides realistic de-
scription of the light absorbtion dynamics by the photoexcited hydrated electron at light frequencies
Ω of a scanning laser in the range 1.3–1.9 eV. The model can be used for further simulations and
predictions of the polaron states dynamics in the aqueous medium and in other condensed media. An
MPI-based parallel algorithm is shown to provide the 8–11 times acceleration in comparison with the
serial calculations.
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