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A closed system of nonlinear differential equations is proposed for current correlation functions of the
Kubo expression for conductivity. The chain of equations is closed by dropping the correlations of higher
order. The approach allows estimating an error of the dropped correlations. A successive approximation
technique can take account of the corrections and allow for subtle effects caused by DNA structure and
identifies areas, where these corrections are significant. The local conductivity in one-dimensional case
was shown to be defined by adjacent sites. Zone conductivity takes place for small electron-vibrational
interactions. The conductivity decreases with temperature rise, but it may increase or decrease at low
temperatures because of finiteness of polymer fragment. At low temperatures the zone conductivity per-
sists for large electron-vibrational interactions, however the possibility of hopping appears, and hopping
conductivity increases with temperature rise and becomes determinant at some temperature but starts
decreasing with temperature rise at high temperatures.

� 2017 Published by Elsevier B.V.
1. Introduction

Systems with strong interaction and small dimension become
the main subject of research at the present time. The most interest-
ing phenomena occur precisely in such systems. However, the
description of such phenomena is more difficult, because the phe-
nomena are more complicated than ordinary. Such systems cannot
be appropriately described with simple change of part of variables
for mean effective field. It is necessary to save part of generalized
dynamic variables in such systems along with introduction of
mean probabilistic characteristics of the systems [1]. The general-
ized coordinates depend on the Hamiltonian of the system and
change during averaging according to its coarseness thus including
the considerable dynamic properties of the system. The corre-
sponding generalized variables could be the external fields
obtained from computations. The initial conditions are believed
to be Gibbs conditions, although it is not necessary. Such system
is a quasi-one-dimensional chain of DNA. A DNA fragment of a spe-
cial type of sequence is considered where the transfer occurs along
one chain. A linear Hamiltonian of Fröhlich type can be used in this
case. Hopping conductivity of holes in such system is investigated.

The problem of transfer in DNA occurred immediately after the
discovery of helical structure of DNA by Watson and Crick [2]. This
was due to the fact, that the reactions of charge transfer play an
important role in replication, transcription and repair of DNA
molecule in the processes of mutagenesis and carcinogenesis [3–
5]. The advent of femtosecond technology and the method of cova-
lent binding of complexes performing the donor and acceptor roles
(a kind of ‘‘connectors”) to the DNA fragment, allowed carrying out
direct experiments on measurement of charge transfer [6,7]. In
most experiments, electrons or holes (cation radicals) were created
ad hoc on DNA fragments with a known sequence of bases. The
transfer rate was determined either by quenching of fluorescence,
or by the amount of damages in nucleotides induced with charge
transfer in different parts of the DNA helix.

Studies of DNA frozen in water showed that the irradiation of
DNA leads to migration of charges at a distance of less than 8 base
pairs localized on the guanine G, [8,9]. Then it was shown that the
migration at a distance of about 20 nm (60 base pairs) [10] exists
with an efficiency which depends on distance of the migration.

The electron transfer at distances of 10.2, 13.6, 17.0 Å (3, 4, 5
base pairs between the donor and acceptor respectively) was stud-
ied in experiments [11]. An exponential decrease of the electron
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transfer rate was observed with increase of number of nucleotide
pairs in these experiments. Similar results were obtained in
research [12,13], where the transfer distance was 20.5 Å (8 nucleo-
tide pairs). Unexpected results were shown in work [14], where the
electron transfer at a distance of 15 nucleotide pairs (about 37 Å)
was investigated and the transfer rate was three orders of magni-
tude greater than found in later work [15]. Further experiments
showed that there are various mechanisms of transfer in DNA,
and the transfer rate strongly depends on chain length, on
sequence of nucleotides, on characteristics of donors and acceptors
used in the experiments. Flickering is often observed [16]. Some-
times there is a trigger effect [17].

Study [14] showed that the charge moves mainly along one
DNA strand. Then this strand is considered. The rate of charge
transfer may vary by orders of magnitude in DNA chains of the
same length, depending on type of chain sequence. The relative
values of reaction constants were obtained in works [18,19] for
hole transport from the donor (excited cation radical G�þ) to the
acceptor (guanine triplet GGG), separated by a bridge of one, two,
three and four ðA=TÞ base pairs. Furthermore, there were investi-
gated cases, when one ðA=TÞ pair of the four pairs of bridge had
been substituted for ðG=CÞ pair. Theoretical estimates of the trans-
port rate lead to the value of 1012 . . .1010 s�1. However, measure-
ments [20–22] showed that the rate is equal to 107 . . .108 s�1.
The experiments showed that the DNA molecule with a random
nucleotide sequence does not resemble a semiconductor at all
[23]. However, DNA properties are close to properties of molecular
wires in special cases, i.e. the transport rate depends weakly on the
length of DNA sequence, for example, when DNA has artificially
synthesized fragments with the same nucleotide pairs.

The electron-vibrational interaction is usually large in such sys-
tems. This leads to involvement of many vibrations in the transfer
processes and to a strong influence of temperature on conductivity.
The ‘‘crystal” is finite and heterogeneous in our case. Holstein ana-
lyzed this problem in 1959 [24,25] for a one-dimensional homoge-
neous infinite crystal and showed that there is a coherent (zone)
and incoherent (hopping) transfer mechanism. We shall see below
that they are parallel and overlap each other [26–28]. Contribution
of both mechanisms was also observed [23].

The aim of this work is to develop an analytical method that
enables to derive a closed system of equations, which would have
a solution clarifying the mechanisms of the transport processes in
heterogeneous linear polymers and DNA, explaining experiments
and making predictions based on realistic models.

Such closed system of equations is obtained below for the cur-
rent correlation functions included in the Kubo expression [29] for
conductivity, and the approximations made are discussed.
2. A closed system of equations for the current correlation
functions

We shall take the advantage of formalism of the density matrix
and give the exact expression for the coefficient of electrical con-
ductivity, the Kubo formula [29]. The conductivity tensor in x
direction is equal to

rxx ¼ 1
L
lim
s!0

Z b

0
dk
Z 1

0
e�sthJxð�ikÞJxðtÞidt;

where h. . .i denotes averaging with density matrix q, T is temporal
ordering operator, q ¼ q0 exp½�bðH � FÞ�=Spðexp½�bðH � FÞ�q0Þ, L is

the length of the DNA fragment, b ¼ ðkTÞ�1, JðtÞ is the current
operator in the Heisenberg representation q0 ¼
T exp

PR1
0 ðgþ

q ðtÞbqðtÞ þ g�
q ðtÞbþ

q ðtÞÞdt
h i

. Auxiliary classical fields

g�
q allow recording an infinite chain of differential equations as a
single functional derivative equation [30]. The classical fields vanish
at the end of computations and there remains only averaging over
the equilibrium states of the vibrational subsystem in the initial
time. The system with only one charge carrier is considered.

Such complex structures as DNA can hardly be investigated
analytically. A simplified model, which retains the basic properties
of the original problem, is required. The model would be detailed
enough to reproduce physical effects of interest to us, but not
overdetailed. We will simulate B-form of DNA, because it is
believed to be the most typical. The simplest Hamiltonian will be
considered for DNA at low temperatures, i.e. before phase transi-
tion in a backbone. Consideration of more complex Hamiltonian
does not lead to fundamental difficulties, but only the dependence
of carrier mobility on temperature is of interest here. In this case

H ¼
X
m

emaþmam þ
X
m

Bm�1;maþm�1am þ
X
m

Bmþ1;maþmþ1am

þ
X
q

xqb
þ
q bq �

X
m

Amqxqðbq þ bþ
�qÞaþmam; ð1Þ

where aþ
mðamÞ are the operators of creation (annihilation) of

particles of electron subsystem, bþ
q ðbqÞ are the operators of creation

(annihilation) of particles of vibrational subsystem, Amq is the

parameter of electron-vibrational interaction.Amq ¼ cq 1
2N

� �1
2eiqm ¼

Aqeiqm are the dimensionless values characterizing polarization of
medium in the vicinity of site m in electronic state em in quasi-
one-dimensional case, N is the number of sites of the DNA fragment,
em is the energy of electron (hole) on nodem, Bm�1;m is the resonance
integral of overlapping sites m� 1 and m, xq are the vibration fre-
quencies, cq is the characteristic of electron-vibrational interaction.

This Hamiltonian is usually used in study of electron-hole con-
ductivity. It consists of electronic part, vibrational part and
describes interaction between electrons and backbone vibrations.
The Hamiltonian considers the possibility of polarization of the
DNA backbone. The Hamiltonian allows theoretical investigation
of hole (or electron) transfer along the fragment considering the
relaxation process [31,32] and enables to calculate the lumines-
cence yield for recombination of the radical anion (localized elec-
tron) and radical cation (hole). The recombination time is related
to the path hole takes and depends on structure of the fragment
[33,34]. It allows to obtain the information about structure of the
DNA fragment. The Hamiltonian parameters determined from the
real systems are: eG ¼ 1:24 eV, eA ¼ 1:69 eV, eZ ¼ 0:95 eV,
BGA ¼ BAG ¼ 0:09 eV, BAZ ¼ BZA ¼ 0:05 eV, BGG ¼ 0:028 eV,
x ¼ 0:01 . . . 0:03 eV. For programming purposes a value of the
order of 10�12 s is chosen as the time unit and Hamiltonian is
passed to dimensionless parameters which are eG ¼ 16:74,
eA ¼ 22:79, eZ ¼ 12:95, BGA ¼ BAG ¼ 1:35, BAZ ¼ BZA ¼ 0:74,
BGG ¼ 0:48, x ¼ 0:1 . . .0:3. Here G is guanine, A is adenine, Z is 7-
deazaguanine. Amq is estimated from experimental data.

The current operator is equal to

Jx ¼ �ie
X

xmðBm;m�1aþmam�1 þ Bm;mþ1aþmamþ1Þ; ð2Þ
where xm is site coordinate.

This leads to expression for the coefficient of conductivity

rxx ¼ �e2Re
1
L
lim
s!0

Z b

0
dk
Z 1

0
e�st

X
xmxn

�
< Bm;m�1aþmð�ikÞam�1ð�ikÞ þ Bm;mþ1aþmð�ikÞamþ1ð�ikÞ� �
� Bn;n�1aþn ðtÞan�1ðtÞ þ Bn;nþ1aþn ðtÞanþ1ðtÞÞ > dt
� �

: ð3Þ

The correlation function (CF) is introduced

Gn;nþgð�ik; tÞ ¼ haþm1
ð�ikÞan1 ð�ikÞaþn ðtÞanþgðtÞi

¼ Gn;nþgð0; t þ ikÞ; g ¼ �1:
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The goal is to derive an equation for computation of CF for
selected Hamiltonian (1). The motion equations for the operators
have the form

i
d
dt

aþm ¼�emaþm �Bm�1;maþm�1 �Bmþ1;maþmþ1 þ
X
q

Amqxqðbq þbþ
�qÞaþm;

i
d
dt

am ¼ emam þBm�1;mam�1 þBmþ1;maþmþ1 �
X
q

Amqxqðbq þbþ
�qÞam;

i
d
dt

bþ
q ¼�xqb

þ
q þ

X
m

Amqxqaþmam;

i
d
dt

bq ¼xqjbq �
X
m

Amqxqaþmam:

ð4Þ
The equation for CF has the form

i
d
dt

Gm;nð�ik; tÞ ¼ ð�em þ enÞGm;nð�ik; tÞ � Bm;m�1Gm�1;nð�ik; tÞ
� Bm;mþ1Gmþ1;nð�ik; tÞ þ Bn;n�1Gm;n�1ð�ik; tÞ
þ Bn;nþ1Gm;nþ1ð�ik; tÞ þ

X
q

xqðAmq � AnqÞhðbq

þ bþ
�qÞbGm;nð�ik; tÞi; ð5Þ

where notation bGn;nþgð�ik; tÞ ¼ aþm1
ð�ikÞan1 ð�ikÞaþn ðtÞanþgðtÞ is

introduced.

Note, that CF of higher order hbq
bGm;nð�ik; tÞi and

hbþ
�q
bGm;nð�ik; tÞi were included in (5) for which their equations

would be written down, latter will include CF of even higher order,
and so on to infinity. We have

i
d
dt

hbq1
bGm;nð�ik; tÞi ¼ xq1 hbq1

bGm;ni

�
X
m1

xq1Am1q1 haþm1
am1

bGm;ni þ ð�em

þ enÞhbq1
bGm;nð�ik; tÞi

� Bm;m�1hbq1
bGm�1;nð�ik; tÞi

� Bm;mþ1hbq1
bGmþ1;nð�ik; tÞi

þ Bn;n�1hbq1
bGm;n�1ð�ik; tÞi

þ Bn;nþ1hbq1
bGm;nþ1ð�ik; tÞi þ

X
q

xqðAmq

� AnqÞhTbq1 ðbq þ bþ
�qÞbGm;nð�ik; tÞi; ð6Þ

i
d
dt

hbþ
q1
bGm;nð�ik; tÞi ¼�xq1 hbþ

q1
bGm;niþ

X
m1

xq1Am1q1 haþm1
am1

bGm;ni

þ ð�em þ enÞhbþ
q1
bGm;nð�ik; tÞi

�Bm;m�1hbþ
q1
bGm�1;nð�ik; tÞi

�Bm;mþ1hbþ
q1
bGmþ1;nð�ik; tÞi

þBn;n�1hbþ
q1
bGm;n�1ð�ik; tÞi

þBn;nþ1hbþ
q1
bGm;nþ1ð�ik; tÞi

þ
X
q

xqðAmq �AnqÞhTbþ
q1
ðbq þbþ

�qÞbGm;nð�ik; tÞi:

ð7Þ

New CF hTbþ
q1
bq2
bGm;nð�ik; tÞi, hTbq1bq2

bGm;nð�ik; tÞi,
hTbþ

q1
bþ
q2
bGm;nð�ik; tÞi, hTbq1b

þ
q2
bGm;nð�ik; tÞi appeared in (6) and (7).

The equations for one of them have the form
i
d
dt

hTbþ
q1
bq2
bGm;nð�ik; tÞi ¼ ð�xq1 þxq2 ÞhTbþ

q1
bq2
bGm;ni

þ
X
m1

ðxq1Am1q1 hbq2a
þ
m1
am1

bGm;ni

�xq2Am1q2 hbþ
q1
aþm1

am1
bGm;niÞ þ ð�em

þ enÞhTbþ
q1
bq2
bGm;nð�ik; tÞi

� Bm;m�1hTbþ
q1
bq2
bGm�1;nð�ik; tÞi

� Bm;mþ1hTbþ
q1
bq2
bGmþ1;nð�ik; tÞi

þ Bn;n�1hTbþ
q1
bq2
bGm;n�1ð�ik; tÞi

þ Bn;nþ1hTbþ
q1
bq2
bGm;nþ1ð�ik; tÞi

þ
X
q

xqðAmq � AnqÞhTbþ
q1
bq2 ðbq

þ bþ
�qÞbGm;nð�ik; tÞi: ð8Þ

A problem of breakage of the chain of equations of CF
(Bogolyubov chain) has arisen. The chain can be broken for coordi-
nates of the current carriers for the chosen Hamiltonian in the
approximation of small-radius polarons aþ

m1
ðtÞam1 ðtÞaþ

mðtÞanðtÞ ¼
dm1 ;ma

þ
mðtÞanðtÞ (approximation of small density of carriers). The

dynamic lag of lattice relative to the electron can be taken into
account and the Hartree approximation aþ

m1
ðt0Þam1 ðt0Þaþman ¼

haþ
m1
ðt0Þam1 ðt0Þiaþ

man ¼ haþ
m1
ð0Þam1 ð0Þiaþ

man should be assumed for
large-radius polarons, that also allows breaking the chain for
coordinates of the current carrier. It remained to close the chain
for the vibrational degrees of freedom. At the present time it is
done by changing the force field of a very complex structure, which
acts on a particle from the side of other particles, to an average
constant field (molecular field). This field is determined from the
self-consistency condition. Such approach is widely used, but it is
justified only with a small interaction between subsystems. It does
not allow for possible dynamic coupling. However, such coupling is
considerable in quasi-one-dimensional systems. Uncoupling of the
chain of equations and considering the dynamic coupling are
possible if functional derivatives are used. Without loss of
generality assumption (9) can be made.

hbq1 ðtÞbGm;nðtÞi ¼ hbq1 ðtÞi þ
d

dgþ
q1
ðtÞ

 !
Gm;nðtÞ

¼ Gm;nðtÞMq1 ðm1;n1;m;n; tÞ: ð9Þ
The left equality in formula (9) is known widely, while the right

equality has been devised by the author [35]. The last equation is
the definition of functional Mq. Similarly, we have

hbþ
q1
ðtÞbGm;nðtÞi ¼ Gm;nðtÞMþ

q1
ðm1;n1;m;n; tÞ; ð10Þ

and

hTbþ
q1
ðtÞbq2 ðt � 0ÞbGm;nðtÞi ¼ Gm;nðtÞ Mþ

q1
ðm1;n1;m;n; tÞ þ d

dg�
q1
ðtÞ

 !
�Mq2 ðm1;n1;m;n; tÞ; ð11Þ

hTbþ
q1
ðtÞbq2 ðt � 0Þbx

q3
ðt � 0� 0ÞbGm;nðtÞi

¼ Gm;nðtÞ Mþ
q1
ðm1;n1;m;n; tÞ þ d

dg�
q1
ðtÞ

 !

� Mq2 ðm1;n1;m;n; tÞ þ d
dgþ

q2
ðtÞ

 !
Mx

q3
ðm1;n1;m;n; tÞ: ð12Þ

The obtained expressions allow collapsing the infinite Bogolyu-
bov chain and finding methods of its approximation. In fact, if the
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operator of variational derivative is applied, and pass to limit
g x
qjðtÞ ! 0 is done, then (10) gives

hbþ
q1
ðtÞbGm;nðtÞi ¼ Mþ

q1
ðm1;n1;m;n; tÞGm;nðtÞ: ð13Þ

The latter expression means that the action of operator bþ
q1
ðtÞ

inside the averaging is substituted for an external field, which is
equivalent in effect and depends on time and on the type of CF con-
sidered. Accordingly, for the annihilation operator exists

hbq1 ðtÞbGm;nðtÞi ¼ Mq1 ðm1;n1;m;n; tÞGm;nðtÞ:

FieldMþ
q1
ðm1;n1;m;n; tÞ differs from fieldMq1 ðm1;n1;m;n; tÞ, but

meanwhile is uncertain, as well as field Mq1 J1 ðm1;n1;m;n; tÞ. The
appropriate equations to define them will be obtained further. A
new quality emerges when two vibrational states (operators) arise
because a correlation between two fields is possible which must be
taken into account. This was considered in expression (11). Passage
to a zero limit for classical fields in this equation gives

hTbþ
q1
ðtÞbq2 ðt � 0ÞbGm;nðtÞi

¼ Mþ
q1
ðm1;n1;m;n; tÞMq1 ðm1;n1;m; n; tÞ

�
þ d
dg�

q1
ðtÞMq2 ðm1;n1;m;n; tÞ

!
Gm;nðtÞ; fg x

qg ! 0:

Since Mþ
q1
ðm1;n1;m;n; tÞ and Mq1 ðm1;n1;m;n; tÞ are fields in a

physical sense acting on a particle (current carrier) with no regard
for the correlations between them, taking the pairwise correlations
between these fields into account reflects the pairwise correlations
in the oscillating subsystem. These pairwise correlations will be
denoted as

Dþ�
q1 ;q2

ðm1;n1;m;n; tÞ ¼ d
dg�

q1
ðtÞMq2 ðm1;n1;n;n; tÞ; fg x

qg ! 0:

Consideration of only pairwise correlations between vibrations
due to nonlinear interactions, or interactions through an interme-
diate carrier particle gives

hTbþ
q1
ðtÞbq2 ðt � 0ÞbGm;nðtÞi ¼ ðMþ

q1
ðtÞMq1 ðtÞ þ Dþ�

q1 ;q2
ðtÞÞGm;nðtÞ:

Hereinafter, the simplification of adopted notation is taken
Mþ

q1
ðm1;n1;m;n; tÞ ¼ Mþ

q1
ðtÞ, Mq1 ðm1;n1;m;n; tÞ ¼ Mq1 ðtÞ, and

Dþ�
q1 ;q2

ðm1;n1;m;n; tÞ ¼ Dþ�
q1 ;q2

ðtÞ.
Values Mþ

q1
ðtÞ and Mq1 ðtÞ take into account the effect from the

first mode on the carrier, and Mþ
q2
ðtÞ, Mq2 ðtÞ — from the second

mode without allowing for possible coordination of the first and
second modes, and Dþ;�

q1 ;q2
ðtÞ takes into consideration the possibility

of correlations between pairs of modes in interaction with the car-
rier. This approximation takes into account all pairwise correla-
tions in the oscillating subsystem. Note that other correlations do
not exist in the univariate case, and this representation is accurate.

Now the case of three modes will be considered, where pairwise
correlations of the first mode with the second, the second mode
with the third, the first mode with the third, and triple correlations
are possible. Passage to limit fg x

qg ! 0 transforms expression (12)
into

hTbþ
q1
ðtÞbq2 ðtÞbx

q3
ðtÞbGm;nðtÞi

¼
 
Mþ

q1
ðtÞMq2 ðtÞMx

q3
ðtÞ þMþ

q1
ðtÞD�x

q2 ;q3
ðtÞ þMq2 ðtÞDþ;x

q1 ;q3
ðtÞ

þMx
q3
ðtÞDþ;�

q1 ;q2
ðtÞ þ d

dg�
q1
ðtÞD

�;x
q2 ;q3

ðtÞ
!
Gm;nðtÞ; fg x

qg ! 0:
Expression d
dg�q1 ðtÞ

D�;�
q2 ;q3

ðtÞ ¼ Tþ;�;�
q1 ;q2 ;q3

describes the effect of triple

correlations on travel of current carriers. There are no such corre-
lations in one-dimensional case at all and they are hardly probable
in general case because imply a collision of three particles at the
same time. Correlations of any higher order can be similarly
allowed for successive increase of the number of modes. The chain
of the equations is closed by dropping the correlations of excessive
order. The obtained system of nonlinear differential equations can
be then solved numerically. The approach allows estimating the
error of dropping of the part of correlations. The above approach
is the improved method of functional derivatives [30,36–38].

3. Consideration of only pair correlations

The Bogolyubov chain equations will be broken in assumption
of T�;�;�

q1 ;q2 ;q3
¼ 0. Eq. (5) can be rewritten with consideration for

agreed notations and approximations as

i
d
dt

Gm;nðtÞ ¼ ð�em þ enÞGm;nðtÞ � Bm;m�1Gm�1;nðtÞ � Bm;mþ1Gmþ1;nðtÞ
þ Bn;n�1Gm;n�1ðtÞ þ Bn;nþ1Gm;nþ1ðtÞ
þ
X
q

xqðAmq � AnqÞðMq þMþ
�qÞGm;nðtÞ; ð14Þ

and Eq. (6) with consideration for (14) takes the form of

i
d
dt

Mq1 ¼ xq1Mq1 �xq1

X
Am2q1 haþm2

ðtÞam2 ðtÞi
þ
X
q

xqðAmq � AnqÞðD�;�
q1 ;q

þ D�;þ
q1 ;q

Þ

þ �Bm;m�1ðMq1 ðm1;n1;m� 1;n; tÞ �Mq1 ÞGm�1;n � Bm;mþ1
�

� ðMq1 ðm1;n1;mþ 1;n; tÞ �Mq1 ÞGmþ1;n

þ Bn;n�1ðMq1 ðm1;n1;m;n� 1; tÞ �Mq1 ÞGm;n�1

þ Bn;nþ1ðMq1 ðm1;n1;m;nþ 1; tÞ �Mq1 ÞGm;nþ1
�
G�1

m;nðtÞ:
ð15Þ

The same operation will be implemented for Eqs. (7) and (8)
which define functions MqðtÞ, Mþ

q ðtÞ and D��
q1 ;q2

ðtÞ. The expressions
are not given here due to their complexity, but will be presented
below after simplification. It would be possible then to write the
equations for function T�;�;�

q1 ;q2 ;q3
ðtÞ and so on, but it is assumed at

the first approximation, that the consideration of triple correla-
tions does not distort the result strongly, and supposed
T�;�;�
q1 ;q2 ;q3

ðtÞ ¼ 0. Then the system of nonlinear Eqs. (14), (15), etc. is
simplified and can be solved numerically.

Members in braces can be taken into consideration to obtain a
solution of desired quality via iterations. The system of equations
will be simplified further. All braces, which appear in the system
of equations, such as appeared in (15), take into account the
change of frequencies or displacements of the term minima from
the presence of current carriers in the system. There is a small
amount of carriers in the system (just one per fragment) and their
effect on a large number of vibrations leads to small corrections
proportional to N�1 (N is the number of vibration modes). Never-
theless, these corrections can be taken into consideration using
the method of successive approximations. It will allow for the sub-
tle effects of the DNA structure and reveal areas where these cor-
rections are significant.

4. Incomplete consideration of pair correlations

All the braces such as appeared in (15) can be omitted in the
first approximation and then the functional equations for Gm;nðtÞ,
Mþ

q ðtÞ, MqðtÞ, D�;�
q1 ;q2

ðtÞ will become much simpler. Then the func-
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tional equations will be obtained in the form of a system of nonlin-
ear equations.

i
d
dt

Gm;nðtÞ ¼ ð�em þ enÞGm;nðtÞ � Bm;m�1Gm�1;nðtÞ � Bm;mþ1Gmþ1;nðtÞ
þ Bn;n�1Gm;n�1ðtÞ þ Bn;nþ1Gm;nþ1ðtÞ
þ
X
q

xqðAmq � AnqÞðMq þMþ
�qÞGm;nðtÞ: ð16Þ

If considered, that the carrier is localized on neighbouring sites,
i.e. aþ

mam þ aþ
n an ¼ 1, then

i
d
dt

Mq1 ¼ xq1Mq1 �xq1 ððAmq1 � Anq1 ÞhaþmðtÞamðtÞi þ Anq1 Þ
þ
X
q

xqðAmq � AnqÞðD�;�
q1 ;q

þ D�;þ
q1 ;q

Þ; ð17Þ

i
d
dt

Mþ
q1

¼ �xq1M
þ
q1
þxq1 ððAmq1 � Anq1 ÞhaþmðtÞamðtÞi þ Anq1 Þ

þ
X
q

xqðAmq � AnqÞðDþ;�
q1 ;q

þ Dþ;þ
q1 ;q

Þ; ð18Þ

and four linear equations with constant coefficients

i
d
dt

Dþ;�
q1 ;q2

ðtÞ ¼ ð�xq1 þxq2 ÞDþ;�
q1 ;q2

ðtÞ; ð19Þ

i
d
dt

D�;þ
q1 ;q2

ðtÞ ¼ ðxq1 �xq2 ÞD�;þ
q1 ;q2

ðtÞ; ð20Þ

i
d
dt

Dþ;þ
q1 ;q2

ðtÞ ¼ ð�xq1 �xq2 ÞDþ;þ
q1 ;q2

ðtÞ; ð21Þ

i
d
dt

D�;�
q1 ;q2

ðtÞ ¼ ðxq1 þxq2 ÞD�;�
q1 ;q2

ðtÞ: ð22Þ

Eqs. (19)–(22) have identical solutions D�;�
q1 ;q2

ðtÞ ¼ D�;�
q1 ;q2

ð0Þ
exp½�ið�xq1 �xq2 Þt�, differing from each other only by the initial
conditions equal to Dþ;�

q1 ;q2
ð0Þ ¼ dq1 ;q2Nq1 , D�;þ

q1 J1 ;q2 J2
ð0Þ ¼ dq1 ;q2dj1 ;j2

ðNq1 J1 þ 1Þ, Dþ;þ
q1 ;q2

ð0Þ ¼ 0, D�;�
q1 ;q2

ð0Þ ¼ 0.
Therefore

Dþ;�
q1 ;q2

ðtÞ ¼ dq1 ;q2Nq1 ;

D�;þ
q1 ;q2

ðtÞ ¼ dq1 ;q2 ðNq1 þ 1Þ;
Dþ;þ

q1 ;q2
ðtÞ ¼ 0;

D�;�
q1 ;q2

ðtÞ ¼ 0:

ð23Þ

Substitution of the obtained solutions in (17), (18) gives

i
d
dt

Mq1 ¼ xq1Mq1 �xq1 ððAmq1 � Anq1 ÞhaþmðtÞamðtÞi þ Anq1 Þ
þxq1 ðAmq1 � Anq1 ÞðNq1 þ 1Þ;

i
d
dt

Mþ
q1

¼ �xq1M
þ
q1
þxq1 ððAmq1 � Anq1 ÞhaþmðtÞamðtÞi þ Anq1 Þ

þxq1 ðAmq1 � Anq1 ÞNq1 :

Solutions of these equations with initial conditions Mþ
qjð0Þ ¼ 0,

Mqjð0Þ ¼ 0 will be

MqðtÞ ¼ e�ixqtf�ðAmq � AnqÞ½haþmðtÞamðtÞi þ Anq � ðNq þ 1Þ�g
þ ðAmq � AnqÞ½haþmðtÞamðtÞi þ Anq � ðNq þ 1Þ�: ð24Þ

Similarly obtained

Mþ
q ðtÞ ¼ eixqtfðAmq � AnqÞ½haþmðtÞamðtÞi þ Anq � Nq�g � ðAmq

� AnqÞ½haþmðtÞamðtÞi þ Anq � Nq�: ð25Þ
haþmðt1Þamðt1Þi was removed from the integrand in point t1 ¼ t,
because function haþmðt1Þamðt1Þi weakly depends on time, and only
two main members of the sum were kept. Consideration of mem-
bers haþ

n ðtÞanðtÞi is important only when large-radius polarons are
considered. When values MqðtÞ, Mþ

q ðtÞ possess the analytic form,
the analysis of the system of equations of CF is reduced to numerical
solution of linear Eq. (16) with variable coefficients.

5. The small-radius polarons

For the case of small-radius polarons we have

i
d
dt

Mq1 ¼xq1Mq1 �xq1Anq1 þxq1 ðAmq1 �Anq1 ÞðNq1 þ1Þ; Mqð0Þ¼Anq;

i
d
dt

Mþ
q1
¼ �xq1M

þ
q1
þxq1Anq1 þxq1 ðAmq1 � Anq1 ÞNq1 ; Mþ

q ð0Þ ¼ Anq:

The solution of these equations is

MqðtÞ ¼ e�ixqt Mqð0Þ � ixqðAmq � AnqÞ
Z t

0
eixqt1 ðNq þ 1Þdt1

	
þ ixq

Z t

0
eixqt1Anqdt1



¼

¼ e�ixqtfðAmq � AnqÞðNq þ 1Þg � ðAmq � AnqÞðNq þ 1Þ þ Anq:

ð26Þ
Similarly

Mþ
q ðtÞ ¼ eixqtf�ðAmq � AnqÞNqg þ Anq þ ðAmq � AnqÞNq:

Substitution of obtained solution (26) in (16) for the one-
dimensional linear chain of N nodes (sites) gives the system of
equations of Mathieu type.

i
d
dt

Gm;mðtÞ ¼ �Bm;m�1Gm�1;mðtÞ � Bm;mþ1Gmþ1;mðtÞ þ Bm;m�1Gm;m�1ðtÞ
þ Bm;mþ1Gm;mþ1ðtÞ;

i
d
dt

Gm�1;mðtÞ ¼ ð�em�1 þ emÞGm�1;mðtÞ � Bm�1;mGm;mðtÞ
þ Bm;m�1Gm�1;m�1ðtÞþ

þ
X
q

xqðe�ixqtfðAm�1q � AmqÞ2ðNq þ 1Þg � ðAm�1q � AmqÞ2

þ 2AmqðAm�1q � AmqÞþ
þ eixqtf�ðAm�1q � AmqÞ2NqgÞGm�1;mðtÞ;

i
d
dt

Gmþ1;mðtÞ ¼ ð�emþ1 þ emÞGmþ1;mðtÞ � Bmþ1;mGm;mðtÞ
þ Bm;mGmþ1;mþ1ðtÞþ

þ
X
q

xqðe�ixqtfðAmþ1q � AmqÞ2ðNq þ 1Þg � ðAmþ1q � AmqÞ2

þ 2AmqðAmþ1q � AmqÞþ
þ eixqtf�ðAmþ1q � AmqÞ2NqgÞGmþ1;mðtÞ; m ¼ 1;2; . . . ;N;

ð27Þ
with initial conditions Gm;nð0Þ ¼ dn1 ;mdm1 ;nnn, where dn1 ;m is Kro-
necker delta, and nn is current carrier population of node n in initial
time.

Such system can be solved with only numerical methods or via
expanding into the resonance integrals on the perturbation theory.
Expression (27) includes two different categories of transitions,
namely, the phononless processes, which have a maximum for
the homogeneous case at zero temperature whenP

Nq ¼
P

Nq1 ¼ 0, and the phonon processes when
P

Nq–
P

Nq1 .
If system (27) is considered for the case of four sites (m = 0, 1, 2,

3) then the analysis of the current CF can be done for the hole tran-



Table 1
The parameters of sites 0 and 3.

№ x01 x23 E01 E23 ðA0 � A1Þ2 ðA2 � A3Þ2 Additives

1 0.3 0.7 �1 �3 4 2 0.003
2 0.4 0.7 �1 3 4 6 0.002
3 0.5 0.6 1 09 3 2 0.001
4 0.6 0.5 2 3 2 16 0.000

Fig. 2. The change of the temperature dependence of the local conductivity of 1–2
link on parameter ðA1 � A2Þ2 for number 1.
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sition from site 1 to site 2, i.e. CF G2;1ðtÞ can be computed. The prob-
ability of local transition in the case of one vibrational frequency
can be calculated according to Kubo formula.

r1!2 ¼ �e2Re
1
L
lim
s!0

Z b

0
dk
Z 1

0
e�stðx1 � x2Þ2B2

1;2haþ1 ð�ikÞa2ð�ikÞaþ
2 ðtÞa1ðtÞidt

� �
¼

¼ �e2Re
1
L
lim
s!0

Z b

0
dk
Z 1

0
e�stðx1 � x2Þ2B2

1;2G2;1ðt þ ikÞdt
� �

:

ð28Þ
The value r1!2ðTÞ was calculated according to formula (28)

when x = 0.3, B1;2 ¼ B2;1 ¼ 0:5, E21 ¼ 3:0, ðA1 � A2Þ2 ¼ 16 and

r0 ¼ e2n2B
2
1;2ðx1 � x2Þ2 for different sites 0 and 3 the parameters

of which are given in Table 1.
As shown in Fig. 1 change of parameters of sites 0 and 3 has

almost no effect on the local hole transfer between sites 1 and 2.
If the curves on the right side in Fig. 1 are considered, then the
upper curve corresponds with case 1, the lower — with case 4,
two intermediate curves correspond with cases 2 and 3 respec-
tively. Additives are made to separate curves for different cases.
If no additives are given, then the curves coincide. Analysis of the
shape and size of the relative conductivity of link 1–2 for a set of
parameter numbers 2–4 led to the same results, i.e. it turned out
that the local conductivity is defined by adjacent sites and does
not depend on the second neighbours. This unexpected result is
related with quasi-one-dimensionality of the system [39,40].

The conductivity-temperature relation of link 1–2 strongly

depends on parameter ðA1 � A2Þ2 (see Fig. 2). If you look at the
curves in the region of 150 K (Fig. 2), then the upper curve corre-

sponds with ðA1 � A2Þ2 ¼ 0:7, medium with ðA1 � A2Þ2 ¼ 4, bottom

with ðA1 � A2Þ2 ¼ 10. Fig. 2 shows that zone conductivity exists and

decreases with temperature rise for small ðA1 � A2Þ2, and it may
increase or decrease at low temperatures due to finiteness of the
polymer fragment. This is related with the selection of one vibra-
Fig. 1. The change of temperature dependence of the relative local conductivity of
1–2 link on parameters of nodes 0 and 3.
tion frequency and so the finite fragment does not allow achieving
resonance of the initial and final states. Zone conductivity still

exists for large ðA1 � A2Þ2 at low temperatures, but the possibility
of hopping conductivity arises which increases with temperature
then becomes determinative at some temperature, and also begins
to decrease with temperature rise at high temperatures [41–43].
Numerical solution of the equation gives the same results as ana-
lytical solution [44]. The difference between the solutions is not
significant. Therefore the dependence of hole mobility on temper-
ature can be determined using analytical solution.

The diagram plotted from the numerical solutions of the equa-
tions qualitatively coincides with the diagram of analytical solu-
tion, but the quantitative difference between these diagrams is
within 10%. Unlike the exact numerical solution the approximate
analytical solution allows separation of the contributions to
Fig. 3. Decomposition of the hole-transfer velocity by contributions from different
mechanisms.
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conductivity from different mechanisms [45,46] (Fig. 3). Conduc-
tivity caused by tunneling mechanism decreases with temperature
rise because when the temperature increases the equality of the
energies of the initial and final states, which is necessary for the
tunneling process, is upset. Conductivity caused by the hopping
mechanism increases with rising temperature, since the energy
necessary to overcome the potential barrier by the charge carrier
is obtained from thermal fluctuations. The probability of back-
hopping or reflection from the barrier decreases with growing
temperature.
6. Results and conclusion

The above method of obtaining the equations suitable for com-
putational investigation of correlation functions (CF) is applicable
for arbitrary systems including DNA and has an internal criterion
of applicability. The analysis would be implemented taking into
account CF of higher order for this purpose, and the relative correc-
tion would be determined to the previous specific-purpose result.
It also allows identifying correlations that define the phenomenon
(they are not necessarily two-particle or three-particle). The phys-
ical meaning of introduced functions Mþ

q ðtÞ, M�
q ðtÞ, Dþ;�

q1 J1 ;q2 J2
ðtÞ,

D�;þ
q1 J1 ;q2 J2

ðtÞ, Dþ;þ
q1 J1 ;q2 J2

ðtÞ, D�;�
q1 J1 ;q2 J2

ðtÞ, etc., is introduction of the vari-
ables of self-consistent fields instead of operators under the sign
of averaging. This leads to reducing of an infinite system of linear
equations to an equivalent finite system of nonlinear equations.
This allows making the best use of numerical solution methods.
The proposed method allows considering non-exponential and
non-monotonic change of CF with time. The idea to choose the
self-consistent field is coming down to the fact that when the
strong interaction takes place the field exerting effect on vibration
of neighbouring particles from other particles is the same for the
first and second particle and leads to additional correlation
between particles. The results can be used in investigations of
the mobility of charge carriers in a specially synthesized single-
stranded nucleotide DNA and in investigations of the kinetic prop-
erties of DNA in living systems, where the parameters of the frag-
ments are well known. Most interesting are the large-radius
polarons, where new effects were discovered. Special experiments
and modelling of processes are required for these systems. The
mobility was found to depend strongly on fragment structure, tem-
perature, method of polaron preparation (its velocity of travel
along the chain), etc. The DNA system is heterogeneous in our case.
The current is formed in a fragment by the energy absorbed from
the electromagnetic field acting on the charge carriers in the med-
ium. The energy levels are usually discrete in restricted isolated
one-dimensional system. If interaction with the medium exists,
they form a continuum with variable density of states described
with Lorentzian curve. These non-monotonies reveal in conductiv-
ity and create an intricate picture of conductivity change caused by
system parameters and external influences. There are also some
slightly different approaches published [47–49].

The carrier mobility was ascertained to be determined mainly
by neighbouring sites in heterogeneous DNA fragments. The mobil-
ity depends strongly on temperature and interaction parameters of
electron and vibrational subsystems. Mobility results from three
simultaneous processes changing the contribution according to
temperature.

The scope of this work includes the qualitative behaviour of
systems to identify capability of DNA fragments and the develop-
ment of methods for property calculation. Both aims were
attained. The DNA fragments have intricate but predictable
dependence of conductivity behaviour on control parameters. It
can be used if provided the study of the behaviour of each of
the specific DNA fragment. The research and simulation technique
has been also developed and presented in this work. The effects
of increasing or decreasing mobility of particles can be used in
nanotechnologies for design of various nanodevices. They enable
you to create nanoswitches, temperature controllers, temperature
nanosensors, detectors of structure of the DNA fragments, the log-
ical devices. A small-radius heteropolaron is considered in this
work. But, the small-radius polaron cannot always be obtained.
For example, it does not exist in (PolyG/PolyC) chain, which is
not subject to Marcus theory. The Kubo formula describes the
system behaviour in this situation. Application of DNA looks most
promising. In this article, all the preparatory work has been car-
ried out to formulate the problems of investigation of kinetic pro-
cesses in the DNA fragments. So, there is obtained the closed
system of equations for the current correlation functions, which
can be solved numerically with estimated error of the discarded
part of the system and considered corrections for the discarded
members. The effect of backbone polarization on hole transfer
in DNA is clarified.

Acknowledgements

Authors express sincere gratitude to Russian Foundation for
Basic Research – Russia for support of the research with grant N
13-07-00331-‘‘a”.

References

[1] S.I. Kubarev, O.A. Ponomarev, The Effects of Dynamic Coupling in Statistical
Physics, Nauka, Moscow, 1992 (in Russian).

[2] D.D. Eley, D.I. Spivey, Semiconductivity of organic substances. Part 9. -Nucleic
acid in the dry state, Trans. Faraday Soc. 58 (1962) 411–415.

[3] M. Tubiana, J. Dutreix, A. Wambersie, Introduction to Radiobiology, Taylor &
Francis, London, 1990.

[4] K. Frenkel, Carcinogen – mediated oxidant formation and oxidative DNA
damage, Pharmacol. Ther. 53 (1992) 127–166.

[5] B.N. Ames, M.K. Shigenaga, T.M. Hagen, Oxidants, antioxidants and the
degenerative diseases of aging, Proc. Natl. Acad. Sci. USA 90 (1993) 7915–7922.

[6] S.M.M. Conron, A.K. Thazhathveetil, M.R. Wasielewski, A.L. Burin, F.D. Lewis,
Direct measurement of the dynamics of hole hopping in extended DNA
G-tracts. An unbiased random walk, J. Am. Chem. Soc. 132 (2010) 14388–
14390.

[7] M.A. Harris, A.K. Mishra, R.M. Young, K.E. Brown, M.R. Wasielewski, F.D. Lewis,
Direct observation of the hole carriers in DNA photoinduced charge transport,
J. Am. Chem. Soc. 138 (2016) 5491–5494.

[8] D. Becker, M.D. Sevilla, The chemical consequences of radiation damage to
DNA, Adv. Radiat. Biol. 17 (1993) 121–180.

[9] M.G. Debije, M.T. Milano, W.A. Bernhard, DNA responds to ionizing radiation as
an insulator, not as a ‘‘molecular wire”, Angew. Chem. Int. Ed. 38 (1999) 2752–
2756.

[10] M.E. Núñez, D.B. Hall, J.K. Barton, Long-range oxidative damage to DNA: effects
of distance and sequence, Chem. Biol. 6, 85–97.

[11] A.M. Brun, A. Harriman, Dynamics of electron transfer between intercalated
polycyclic molecules: effect of interspersed bases, J. Am. Chem. Soc. 114 (1992)
3656–3660.

[12] T.J. Meade, Electron transfer reactions through the DNA double helix, Met. Ions
Biol. Syst. 32 (1996) 453–478.

[13] T.J. Meade, J.F. Kayyem, Electron transfer through DNA: site-specific
modification of duplex DNA with ruthenium donors and acceptors, Angew.
Chem., Int. Ed. Engl. 34 (1995) 352–354.

[14] S. Cluchi, S. Fratini, D. Mayou, Transient localization in crystalline organic
semiconductors, Phys. Rev. B 83 (2011) 081202(R).

[15] Y. Zhang, C. Liu, A. Balaeff, S.S. Skourtis, D.N. Beratan, Biological charge transfer
via flickering resonance, Proc. Natl. Acad. Sci. 111 (2014) 10049–10054.

[16] T. Hasegawa, J. Takeya, Organic field-effect transistors using single crystals,
Sci. Technol. Adv. Mater. 10 (2009) 024314–024330.

[17] C.J. Murphy, M.R. Arkin, Y. Jenkins, N.D. Ghatlia, S.H. Bossmann, N.J. Turro, J.K.
Barton, Long-range photoinduced electron transfer through a DNA helix,
Science 262 (1993) 1025–1029.

[18] S.O. Kelley, J.K. Barton, Electron transfer between bases in double helical DNA,
Science 283 (1999) 375–381.

[19] B. Giese, S. Wessely, M. Spormann, U. Lindemann, E. Meggers, M.E. Michel-
Beyerle, On the mechanism of long-range electron transfer through DNA,
Angew. Chem. Int. Ed. 38 (1999) 996–998.

[20] F.D. Lewis, X. Liu, J. Liu, S.E. Miller, R.T. Hayes, M.R. Wasielewski, Direct
measurement of hole transport dynamics in DNA, Nature 406 (2000) 51–53.

[21] B. Giese, A. Biland, Recent developments of charge injection and charge
transfer in DNA, Chem. Commun. (2002) 667–672.

http://refhub.elsevier.com/S2210-271X(17)30158-5/h0005
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0005
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0005
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0010
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0010
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0015
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0015
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0015
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0020
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0020
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0025
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0025
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0030
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0030
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0030
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0030
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0035
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0035
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0035
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0040
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0040
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0045
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0045
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0045
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0045
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0055
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0055
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0055
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0060
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0060
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0065
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0065
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0065
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0070
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0070
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0075
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0075
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0080
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0080
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0085
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0085
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0085
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0090
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0090
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0095
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0095
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0095
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0100
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0100
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0105
http://refhub.elsevier.com/S2210-271X(17)30158-5/h0105


26 O.A. Ponomarev et al. / Computational and Theoretical Chemistry 1109 (2017) 19–26
[22] E. Meggers, M.E. Michel-Beyerle, B. Giese, Sequence dependent long range hole
transport in DNA, J. Am. Chem. Soc. 120 (1998) 12950–12955.

[23] U. Lundin, R.H. McKenzie, Temperature dependence of polaronic transport
through single molecules and quantum dots, Phys. Rev. B 66 (2002), 075303-
075301-075303-075308.

[24] T. Holstein, Studies of polaron motion, Ann. Phys. 8 (1959) 325–342.
[25] T. Holstein, Studies of polaron motion, Ann. Phys. 8 (1959) 343–389.
[26] J.H. Schön, C. Kloc, B. Batlogg, Universal crossover from band to hopping

conduction in molecular organic semiconductors, Phys. Rev. Lett. 86 (2001)
3843–3846.

[27] T. Sakanoue, H. Sirringhaus, Band-like temperature dependence of mobility in
a solution-processed organic semiconductor, Nat. Mater. 9 (2010) 736–740.

[28] B.R. Landry, J.E. Subotnik, How to recover Marcus theory with fewest switches
surface hopping: add just a touch of decoherence, J. Chem. Phys. 137 (2012)
22A513.

[29] R. Kubo, Statistical-mechanical theory of irreversible processes. I. General
theory and simple applications to magnetic and conduction problems, J. Phys.
Soc. Jpn. 12 (1957) 570–586.

[30] V.I. Klyatskin, Statistical Description of Dynamical Systems With Fluctuating
Parameters, Nauka, Moscow, 1975 (in Russian).

[31] S.K. Min, F. Agostini, E.K.U. Gross, Coupled-trajectory quantum-classical
approach to electronic decoherence in nonadiabatic processes, Phys. Rev.
Lett. 115 (2015) 073001.

[32] L. Wang, D. Beljonne, Flexible surface hopping approach to model the
crossover from hopping to band-like transport in organic crystals, J. Phys.
Chem. Lett. 4 (2013) 1888–1894.

[33] W. Si, C.-Q. Wu, Decoherence and energy relaxation in the quantum-classical
dynamics for charge transport in organic semiconducting crystals: an
instantaneous decoherence correction approach, J. Chem. Phys. 143 (2015)
024103.

[34] J. Lee, J.W. Chung, D.H. Kim, B.-L. Lee, J.-I. Park, S. Lee, R. Häusermann, B.
Batlogg, S.-S. Lee, I. Choi, I.W. Kim, M.S. Kang, Thin films of highly planar
semiconductor polymers exhibiting band-like transport at room temperature,
J. Am. Chem. Soc. 137 (2015) 7990–7993.
[35] S.I. Kubarev, O.A. Ponomarev, The non-simultaneous decoupling method for
correlation functions, Phys. Lett. 26 (1968) 633–634.

[36] P.C. Martin, J. Schwinger, Theory of many-particle systems. I, Phys. Rev. 115
(1959) 1342–1373.

[37] P. Feynman, Statistical Mechanics, Massachusetts Institute of Technology,
1972.

[38] N.N. Bogolyubov, Lectures on Quantum Statistics, Radyanska Shkola, Kiev,
1949 (in Russian).
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