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Consideration is given to thermodynamical properties of a three-dimensional Bose-condensate of translation-invariant bipolarons
(TI-bipolarons). The critical temperature of transition, energy, heat capacity, and the transition heat of ideal TI-bipolaron gas are
calculated. The results obtained are used to explain experiments on high-temperature superconductors.

1. Introduction

The theory of superconductivity is one of the finest and oldest
subject matters of condensed matter physics which involves
bothmacroscopic andmicroscopic theories as well as deriva-
tion ofmacroscopic equations of the theory frommicroscopic
description [1]. In this sense the theory was thought to be
basically completed and its further development was to have
been concerned with further details and consideration of
various special cases.

The situation changed when the high-temperature super-
conductivity (HTSC) was discovered [2]. Surprisingly, it
was found that, in oxide ceramics, the correlation length is
some orders of magnitude less than that in traditional metal
superconductors while the ratio of the energy gap to the
temperature of superconducting transition is much greater
[3]. The current status of research can be found in books and
reviews [4–18].

Today themain problem in this field is to develop amicro-
scopic theory capable of explaining experimental facts which
cannot be accounted for by the standard BCS theory. One
might expect that development of such a theory would not
affect the macroscopic theory based on phenomenological
approach.

With all the variety of modern versions of HTSC micro-
scopic descriptions: phonon, plasmon, spin, exciton, and
other mechanisms, the central point of constructing the
microscopic theory is the effect of electron pairing (Cooper

effect). In what follows such a bosonization of electrons pro-
vides the basis for the description of their superconducting
condensate.

The phenomenon of pairing, in a broad sense, is consid-
ered as arising of bielectron states, while, in a narrow sense, if
the description is based on phonon mechanism, it is treated
as formation of bipolaron states [19]. For a long time this
view was hindered by a large correlation length or the size
of Cooper pairs in BCS theory. For the same reason, over a
long period, the superconductivity was not viewed as a boson
condensate (see footnote at p. 1177 in [20]). A significant
reason of this lack of understanding was a standard idea that
bipolarons are very compact particles.

The most dramatic illustration is the use of the small-
radius bipolaron (SRB) theory to describe HTSC [10, 21, 22].
It implies that a stable bound bipolaron state is formed at
one node of the lattice and subsequently such small-radius
bipolarons are considered as a gas of charged bosons (as a
variant individual SRP are formed and then are considered
within BCS of creation of the bosonic states). Despite the
elegance of such a picture, its actual realization for HTSC
comes up against inextricable difficulties caused by impos-
sibility to meet antagonistic requirements. On the one hand,
the constant of electron-phonon interaction (EPI) should be
large for bipolaron states of small radius to form.On the other
hand, it should be small for the bipolaron mass (on which
the superconducting temperature depends [23–28]) to be
small too. Obviously, the HTSC theory based on SRP concept
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which uses any other (nonphonon) interaction mechanism
mentioned above will run into the same problems.

Alternatively, in describingHTSCone can believe that the
role of a fundamental charged boson particle can be played by
large-radius bipolarons (LRB) [30–34]. Historically just this
assumption was made by Ogg [30] and Schafroth [35] long
before the development of the SRP theory. When viewing
Cooper pairs as a peculiar kind of large-radius bipolaron
states, one might expect that the LRP theory should be used
to solve the HTSC problem.

As pointed out above, the main obstacle to consistent
use of the LRP theory for explaining high-temperature
superconductivitywas an idea that electron pairs are localized
in a small region, the constant of electron-phonon coupling
should be large, and, as a consequence, the effective mass of
electron pairs should be large.

In the light of the latest advances in the theory of
LRP and LRB, namely, in view of development of an all-
new concept of delocalized polaron and bipolaron states,
translation-invariant polarons (TI-polarons) and bipolarons
(TI-bipolarons) [36–42], it seems appropriate to consider
their role in the HTSC theory in a new angle.

We recall the main results of the theory of TI-polarons
and bipolarons obtained in [36–42]. Notice that considera-
tion of just electron-phonon interaction is not essential for
the theory and can be generalized to any type of interaction.

In what follows we will deal only with the main points of
the theory important for the HTSC theory. The main result
of papers [36–42] is construction of delocalized polaron
and bipolaron states in the limit of strong electron-phonon
interaction. The theory of TI-bipolarons is based on the
theory of TI-polarons [36, 37] and retains the validity of
basic statements proved for TI-polarons. The chief of them
is the theorem of analytic properties of the ground state
of a TI-polaron (accordingly TI-bipolaron) depending on
the constant of electron-phonon interaction 𝛼. The main
implication of this statement is the absence of a critical value
of the EPI constant 𝛼𝑐, below which the bipolaron state
becomes impossible since it decays into independent polaron
states. In other words, if there exists a value of 𝛼𝑐, at which the
TI-state becomes energetically disadvantageous with respect
to its decay into individual polarons, then nothing occurs
at this point but for 𝛼 < 𝛼𝑐 and the state becomes
metastable. Hence, over the whole range of 𝛼 variationwe can
consider TI-polarons as charged bosons capable of forming a
superconducting condensate.

Another important property of TI-bipolarons is the
possibility of changing the correlation length over the whole
range of [0,∞] depending on the Hamiltonian parameters
[39]. Hence, it can be both much larger (as is the case in
metals) and much less than the characteristic size between
the electrons in an electron gas (as happens with ceramics).

A detailed description of the theory of TI-polarons and
bipolarons and description of their various properties is given
in review [42].

An outstandingly important property of TI-polarons and
bipolarons is the availability of an energy gap between their
ground and excited states (Section 3).

The above-indicated characteristics can be used to
develop a microscopic HTSC theory on the basis of TI-
bipolarons.

The paper is arranged as follows. In Section 2 we take
Pekar-Froehlich Hamiltonian for a bipolaron as an initial
Hamiltonian. The results of three canonical transformations,
such as Heisenberg transformation, Lee-Low-Pines trans-
formation, and that of Bogolyubov-Tyablikov are briefly
outlined. Equations determining the TI-bipolaron spectrum
are derived.

In Section 3 we analyze solutions of the equations for the
TI-bipolaron spectrum. It is shown that the spectrum has a
gap separating the ground state of a TI-bipolaron from its
excited states which form a quasicontinuous spectrum. The
concept of an ideal gas of TI-bipolarons is substantiated.

With the use of the spectrum obtained, in Section 4,
we consider thermodynamic characteristics of an ideal gas
of TI-bipolarons. For various values of the parameters,
namely, phonon frequencies, we calculate the values of critical
temperatures of Bose condensation, latent heat of transition
into the condensed state, heat capacity, and heat capacity
jumps at the point of transition.

In Section 5 we discuss the nature of current states
in Bose-condensate of TI-bipolarons. It is shown that the
transition from a currentless state to a current one is sharp.

In Section 6 the results obtained are compared with the
experiment.

In Section 7 we consider the problems of expanding the
theory which would enable one to make a more detailed
comparison with experimental data on HTSC materials.

In Section 8 we sum up the results obtained.

2. Pekar-Froehlich Hamiltonian:
Canonical Transformations

Following [38–42], in describing bipolarons, we will proceed
from Pekar-Froehlich Hamiltonian:

𝐻 = − ℏ22𝑚∗
Δ 𝑟1

− ℏ22𝑚∗
Δ 𝑟2

+∑
𝑘

ℏ𝜔0𝑘𝑎+𝑘 𝑎𝑘
+ 𝑈 (󵄨󵄨󵄨󵄨󵄨󳨀→𝑟 1 − 󳨀→𝑟 2󵄨󵄨󵄨󵄨󵄨)
+ ∑

𝑘

(𝑉𝑘𝑒𝑖󳨀→𝑘󳨀→𝑟 1𝑎𝑘 + 𝑉𝑘𝑒𝑖󳨀→𝑘󳨀→𝑟 2𝑎𝑘 + 𝐻.𝑐.) ,
𝑈 (󵄨󵄨󵄨󵄨󵄨󳨀→𝑟 1 − 󳨀→𝑟 2󵄨󵄨󵄨󵄨󵄨) = 𝑒2𝜖∞ 󵄨󵄨󵄨󵄨󵄨󳨀→𝑟 1 − 󳨀→𝑟 2󵄨󵄨󵄨󵄨󵄨 ,

(1)

where󳨀→𝑟 1󳨀→𝑟 2 are coordinates of the first and second electrons,
respectively; 𝑎+𝑘 , 𝑎𝑘 are operators of the birth and annihilation
of the field quanta with energy ℏ𝜔0𝑘 = ℏ𝜔0;𝑚∗ is the electron
effective mass; the quantity 𝑈 describes Coulomb repulsion
between the electrons;𝑉𝑘 is the function of the wave vector 𝑘:

𝑉𝑘 = 𝑒𝑘√ 2𝜋ℏ𝜔0𝜖𝑉 = ℏ𝜔0𝑘𝑢1/2 (4𝜋𝛼𝑉 )1/2 ,
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𝑢 = (2𝑚∗𝜔0ℏ )1/2 , 𝛼 = 12 𝑒2𝑢ℏ𝜔0𝜖 , 𝜖−1 = 𝜖−1∞ − 𝜖−10 ,
(2)

where 𝑒 is the electron charge; 𝜖∞ and 𝜖0 are high-frequency
and static dielectric permittivities; 𝛼 is the constant of
electron-phonon interaction; 𝑉 is the systems volume.

In the system of the center of mass Hamiltonian (1) takes
the form:

𝐻 = − ℏ22𝑀𝑒

Δ𝑅 − ℏ22𝜇𝑒Δ 𝑟 +∑
𝑘

ℏ𝜔0𝑘𝑎+𝑘 𝑎𝑘 + 𝑈 (󵄨󵄨󵄨󵄨󵄨󳨀→𝑟 󵄨󵄨󵄨󵄨󵄨)
+∑

𝑘

2𝑉𝑘 cos 󳨀→𝑘󳨀→𝑟2 (𝑎𝑘𝑒𝑖󳨀→𝑘󳨀→𝑅 + 𝐻.𝑐.) ,
󳨀→𝑅 = (󳨀→𝑟 1 + 󳨀→𝑟 2)2 , 󳨀→𝑟 = 󳨀→𝑟 1 − 󳨀→𝑟 2, 𝑀𝑒 = 2𝑚∗, 𝜇𝑒 = 𝑚∗

2 .
(3)

In what follows in this section we will believe ℏ = 1, 𝜔0𝑘 = 1,𝑀𝑒 = 1 (accordingly 𝜇𝑒 = 1/4).
The coordinates of the center of mass 󳨀→𝑅 can be excluded

from Hamiltonian (3) using Heisenberg’s canonical transfor-
mation [43]:

𝑆1 = exp{−𝑖∑
𝑘

󳨀→𝑘𝑎+𝑘 𝑎𝑘}󳨀→𝑅,
𝑆−11 𝑎𝑘𝑆1 = 𝑎𝑘𝑒−𝑖󳨀→𝑘󳨀→𝑅 ,
𝑆−11 𝑎+𝑘 𝑆1 = 𝑎+𝑘 𝑒𝑖󳨀→𝑘󳨀→𝑅 .

(4)

Accordingly, the transformed Hamiltonian will be written as

𝐻̃ = 𝑆−11 𝐻𝑆1
= −2Δ 𝑟 + 𝑈 (󵄨󵄨󵄨󵄨󵄨󳨀→𝑟 󵄨󵄨󵄨󵄨󵄨) + ∑

𝑘

𝑎+𝑘 𝑎𝑘
+∑

𝑘

2𝑉𝑘 cos 󳨀→𝑘󳨀→𝑟2 (𝑎𝑘 + 𝑎+𝑘 ) + 12 (∑
𝑘

󳨀→𝑘𝑎+𝑘 𝑎𝑘)
2 .

(5)

From (5) it follows that the exact solution of the bipolaron
function is determined by thewave function𝜓(𝑟), which con-
tains only relative coordinates 𝑟 and, therefore, is translation-
invariant.

Averaging of 𝐻̃ over 𝜓(𝑟) yields the Hamiltonian𝐻:

𝐻 = 12 (∑
𝑘

󳨀→𝑘𝑎+𝑘 𝑎𝑘)
2 +∑

𝑘

𝑎+𝑘 𝑎𝑘 +∑
𝑘

𝑉𝑘 (𝑎𝑘 + 𝑎+𝑘 ) + 𝑇 + 𝑈,
𝑉𝑘 = 2𝑉𝑘⟨Ψ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨cos

󳨀→𝑘󳨀→𝑟2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝜓⟩ , 𝑈 = ⟨Ψ |𝑈 (𝑟)| Ψ⟩ , 𝑇 = −2 ⟨Ψ 󵄨󵄨󵄨󵄨Δ 𝑟

󵄨󵄨󵄨󵄨 Ψ⟩ .
(6)

Equation (6) suggests that the bipolaron Hamiltonian differs
from the polaron one in that in the latter the quantity 𝑉𝑘 is
replaced by 𝑉𝑘 and the constants 𝑇, 𝑈 are added.

With the use of Lee-Low-Pines canonical transformation
[44]:

𝑆2 = exp{∑
𝑘

𝑓 (𝑘) (𝑎+𝑘 − 𝑎𝑘)} , (7)

where 𝑓𝑘 are variational parameters having the sense of the
distance bywhich the field oscillators are displaced from their
equilibrium positions:

𝑆−12 𝑎𝑘𝑆𝑘 = 𝑎𝑘 + 𝑓𝑘,
𝑆−12 𝑎+𝑘 𝑆𝑘 = 𝑎+𝑘 + 𝑓𝑘, (8)

for Hamiltonian ̃̃𝐻:

̃̃𝐻 = 𝑆−12 𝐻𝑆2, (9)

we get

̃̃𝐻 = 𝐻0 + 𝐻1, (10)

𝐻0 = 2∑
𝑘

𝑉𝑘𝑓𝑘 +∑
𝑘

𝑓2𝑘 + 12 (∑
𝑘

󳨀→𝑘𝑓2𝑘)
2 +H0 + 𝑇 + 𝑈,

H0 = ∑
𝑘

𝜔𝑘𝑎+𝑘 𝑎𝑘 + 12∑
𝑘,𝑘󸀠

󳨀→𝑘󳨀→𝑘󸀠𝑓𝑘𝑓𝑘󸀠 (𝑎𝑘𝑎𝑘󸀠 + 𝑎+𝑘 𝑎+𝑘󸀠 + 𝑎+𝑘 𝑎𝑘󸀠 + 𝑎+𝑘󸀠𝑎𝑘) , 𝜔𝑘 = 1 + 𝑘22 + 󳨀→𝑘∑
𝑘󸀠

󳨀→𝑘 󸀠𝑓2𝑘󸀠 .
(11)
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Hamiltonian𝐻1 contains linear, threefold, and fourfold terms
in the birth and annihilation operators. Its explicit form is
given in [36–38].

Then, as is shown in [36, 37], the use of Bogolyubov-
Tyablikov canonical transformation [45] for passing on from
operators 𝑎+𝑘 , 𝑎𝑘 to new operators 𝛼+𝑘 , 𝛼𝑘:

𝑎𝑘 = ∑
𝑘󸀠

𝑀1𝑘𝑘󸀠𝛼𝑘󸀠 +∑
𝑘󸀠

𝑀∗
2𝑘𝑘󸀠𝛼+𝑘󸀠

𝑎+𝑘 = ∑
𝑘󸀠

𝑀∗
1𝑘𝑘󸀠𝛼+𝑘󸀠 +∑

𝑘󸀠

𝑀2𝑘𝑘󸀠𝛼𝑘󸀠 (12)

(in which H0 is a diagonal operator), makes mathematical
expectation of𝐻1 equal to zero.

In the new operators 𝛼+𝑘 , 𝛼𝑘 Hamiltonian (11) takes on the

form
̃̃̃𝐻: ̃̃̃𝐻 = 𝐸𝑏𝑝 +∑

𝑘

]𝑘𝛼+𝑘𝛼𝑘, (13)

𝐸𝑏𝑝 = Δ𝐸𝑟 + 2∑
𝑘

𝑉𝑘𝑓𝑘 +∑
𝑘

𝑓2𝑘 + 𝑇 + 𝑈, (14)

where Δ𝐸𝑟 is the so-called recoil energy. The general expres-
sion for Δ𝐸𝑟 = Δ𝐸𝑟{𝑓𝑘} was obtained in [37]. Actually,
calculation of the ground state energy 𝐸𝑏𝑝 was performed in
[41] by minimization of (14) in 𝑓𝑘 and in 𝜓.

Notice that in the theory of a polaron with broken
symmetry a diagonalized electron-phonon Hamiltonian has
the form of (13)-(14) [46]. This Hamiltonian can be treated
as a Hamiltonian of a polaron and a system of its associated
renormalized real phonons or as a Hamiltonian whose
quasiparticle excitations spectrum is determined by (13)-(14)
[47]. In the latter case excited states of a polaron are Fermi
quasiparticles.

In the case of a bipolaron the situation is qualitatively
different since a bipolaron is a boson quasiparticle whose
spectrum is determined by (13)-(14). Obviously, a gas of such
quasiparticles can experience Bose-Einstein condensation
(BEC). Treatment of (13)-(14) as a bipolaron and its associated
renormalized phonons does not prevent their BEC since
maintenance of the number of particles required in this case
takes place automatically due to commutation of the total
number of renormalized phonons with Hamiltonian (13)-
(14).

Renormalized frequencies ]𝑘 involved in (13)-(14),
according to [36, 37], are determined by the equation for 𝑠:

1 = 23∑
𝑘

𝑘2𝑓2𝑘𝜔𝑘𝑠 − 𝜔2
𝑘

, (15)

solutions of which yield the spectrum of 𝑠 = {]2𝑘} values.
3. Energy Spectrum of a TI-Bipolaron

Hamiltonian (13)-(14) is conveniently presented in the form:

̃̃̃𝐻 = ∑
𝑛=0,1,2,...

𝐸𝑛𝛼+𝑛𝛼𝑛, (16)

𝐸𝑛 = {{{{{
𝐸𝑏𝑝, 𝑛 = 0;
]𝑛 = 𝐸𝑏𝑝 + 𝜔0 + 𝑘2𝑛2 , 𝑛 ̸= 0, (17)

where in the case of a three-dimensional ionic crystal is

𝑘𝑛𝑖 = ±2𝜋 (𝑛𝑖 − 1)𝑁𝑎𝑖

,
𝑛𝑖 = 1, 2, . . . , 𝑁𝑎𝑖2 + 1, 𝑖 = 𝑥, 𝑦, 𝑧,

(18)

where 𝑁𝑎𝑖
is the number of atoms along the 𝑖th crystallo-

graphic axis.
Let us prove the validity of the expression for the spec-

trum (16), (17). Since operators 𝛼+𝑛 , 𝛼𝑛 obey Bose commuta-
tion relations: [𝛼𝑛, 𝛼+𝑛󸀠] = 𝛼𝑛𝛼+𝑛󸀠 − 𝛼+𝑛󸀠𝛼𝑛 = 𝛿𝑛,𝑛󸀠 , (19)
they can be considered to be operators of birth and annihila-
tion of TI-bipolarons.The energy spectrum of TI-bipolarons,
according to (15), is determined by the equation𝐹 (𝑠) = 1, (20)
where

𝐹 (𝑠) = 23∑𝑛
𝑘2𝑛𝑓2𝑘𝑛𝜔2𝑘𝑛𝑠 − 𝜔2

𝑘𝑛

. (21)

It is convenient to solve (20) graphically (Figure 1).
Figure 1 suggests that the frequencies ]𝑘𝑛 (index 𝑖 is

omitted) lie between the frequencies𝜔𝑘𝑛 and𝜔𝑘𝑛+1 . Hence, the
spectrum ]𝑘𝑛 as well as the spectrum𝜔𝑘𝑛 are quasicontinuous:
]𝑘𝑛 −𝜔𝑘𝑛 = 𝑂(𝑁−1), which just proves the validity of (16), (17).

It follows that the spectrum of a TI-bipolaron has a
gap between the ground state 𝐸𝑏𝑝 and the quasicontinuous
spectrum, equal to 𝜔0.

Below we will consider the case of low concentration
of TI-bipolarons in a crystal. Then they can adequately
be considered as an ideal Bose gas, whose properties are
determined by Hamiltonian (16).

4. Statistical Thermodynamics of Low-Density
TI-Bipolaron Gas

Let us consider an ideal Bose gas of TI-bipolarons which
represents a system of𝑁 particles occurring in some volume𝑉. Let us write 𝑁0 for the number of particles in the lower
one-particle state and𝑁󸀠 for the number of particles in higher
states. Then

𝑁 = ∑
𝑛=0,1,2,...

𝑚𝑛 = ∑
𝑛

1𝑒(𝐸𝑛−𝜇)/𝑇 − 1 , (22)

𝑁 = 𝑁0 + 𝑁󸀠,
𝑁0 = 1𝑒(𝐸𝑏𝑝−𝜇)/𝑇 − 1 ,
𝑁󸀠 = ∑

𝑛 ̸=0

1𝑒(𝐸𝑛−𝜇)/𝑇 − 1 .
(23)
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F(s)

1

2
k1 = 1 2

k2 2
k3 2

k4

s

]2k1 ]2k2 ]2k3 ]2k4

Figure 1: Graphical solution of (20).

In expression 𝑁󸀠 (23), we will perform integration over
quasicontinuous spectrum (instead of summation) (16), (17)
and assume 𝜇 = 𝐸𝑏𝑝. As a result, from (22), (23) we get
an equation for determining the critical temperature of Bose
condensation 𝑇𝑐:

𝐶𝑏𝑝 = 𝑓𝜔̃ (𝑇̃𝑐) , (24)

𝑓𝜔̃ (𝑇̃𝑐) = 𝑇̃3/2𝑐 𝐹3/2 (𝜔̃/𝑇̃𝑐) ,
𝐹3/2 (𝛼) = 2√𝜋 ∫∞

0

𝑥1/2𝑑𝑥𝑒𝑥+𝛼 − 1 ,
𝐶𝑏𝑝 = (𝑛2/32𝜋ℏ2𝑀𝑒𝜔∗ )3/2 ,
𝜔̃ = 𝜔0𝜔∗ ,
𝑇̃𝑐 = 𝑇𝑐𝜔∗ ,

(25)

where 𝑛 = 𝑁/𝑉. Figure 2 shows a graphical solution of (24)
for the values of parameters 𝑀𝑒 = 2𝑚∗ = 2𝑚0, where 𝑚0 is
the mass of a free electron in vacuum, 𝜔∗ = 5meV (≈58K),𝑛 = 1021 cm−3, and the values 𝜔̃1 = 0, 2; 𝜔̃2 = 1; 𝜔̃3 = 2;𝜔̃4 = 10; 𝜔̃5 = 15; 𝜔̃6 = 20.

It is seen fromFigure 2 that the critical temperature grows
with increasing phonon frequency𝜔0.The relations of critical
temperatures 𝑇𝑐𝑖/𝜔0𝑖 corresponding to the chosen parameter
values are given in Table 1. Table 1 suggests that the critical
temperature of a TI-bipolaron gas is always higher than that
of ideal Bose gas (IBG). It is also evident from Figure 2 that
an increase in the concentration of TI-bipolarons 𝑛 will lead
to an increase in the critical temperature, while a gain in the
electronmass𝑚∗ to its decrease. For 𝜔̃ = 0 the results go over
into the limit of IBG. In particular, (24), for 𝜔̃ = 0, yields the
expression for the critical temperature of IBG:

𝑇𝑐 = 3, 31ℏ2𝑛2/3𝑀𝑒

. (26)
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Figure 2: Solutions of (24) with 𝐶𝑏𝑝 = 331, 3 and 𝜔̃𝑖 = {0, 2; 1; 2; 10;15; 20}, which correspond to 𝑇̃𝑐𝑖 : 𝑇̃𝑐1 = 27, 3; 𝑇̃𝑐2 = 30; 𝑇̃𝑐3 = 32;𝑇̃𝑐4 = 42; 𝑇̃𝑐5 = 46, 2; 𝑇̃𝑐6 = 50.

It should be stressed, however, that (26) involves𝑀𝑒 = 2𝑚∗,
rather than the bipolaron mass. This resolves the problem of
the low temperature of condensation which arises both in
the SRP theory and in the LRP theory in which expression
(26) involves the bipolaron mass [31–34]. Another important
result is that the critical temperature 𝑇𝑐 for the parameter
values considerably exceeds the gap energy 𝜔0.
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Table 1: Calculated characteristics of Bose gas of TI-bipolarons with concentration 𝑛 = 1021 cm−3.

𝑖 0 1 2 3 4 5 6𝜔̃𝑖 0 0,2 1 2 10 15 20𝑇𝑐𝑖/𝜔𝑜𝑖 ∞ 136,6 30 16 4,2 3 2,5𝑞𝑖/𝑇𝑐𝑖 1,3 1,44 1,64 1,8 2,5 2,8 3−Δ(𝜕𝐶V,𝑖/𝜕𝑇̃) 0,11 0,12 0,12 0,13 0,14 0,15 0,15𝐶V,𝑖(𝑇𝑐 − 0) 1,9 2,16 2,46 2,7 3,74 4,2 1,6(𝐶𝑠 − 𝐶𝑛)/𝐶𝑛 0 0,16 0,36 0,52 1,23 1,53 1,8𝑛𝑏𝑝𝑖 ⋅ cm3 16 ⋅ 1019 9,4 ⋅ 1018 4,2 ⋅ 1018 2,0 ⋅ 1018 1,2 ⋅ 1017 5,2 ⋅ 1014 2,3 ⋅ 1013
𝜔̃𝑖 = 𝜔𝑖/𝜔

∗, 𝜔∗ = 5meV, 𝜔𝑖 is the energy of an optical phonon; 𝑇𝑐𝑖 is the critical temperature of the transition, 𝑞𝑖 is the latent heat of the transition from
condensate to supracondensate state; −Δ(𝜕𝐶V,𝑖/𝜕𝑇̃) = 𝜕𝐶V,𝑖/𝜕𝑇̃|𝑇̃=𝑇̃𝑐𝑖+0

− 𝜕𝐶V,𝑖/𝜕𝑇̃|𝑇̃=𝑇̃𝑐𝑖−0
is the jump in heat capacity during SC transition, 𝑇̃ = 𝑇/𝜔∗;

𝐶V,𝑖(𝑇𝑐 − 0) is the heat capacity in the SC phase at the critical point; 𝐶𝑠 = 𝐶V(𝑇𝑐 − 0), 𝐶𝑛 = 𝐶V(𝑇𝑐 + 0). The calculations are carried out for the concentration
of TI-bipolarons 𝑛 = 1021cm−3 and the effective mass of a band electron 𝑚∗ = 𝑚0. The table also lists the values of concentrations of TI-bipolarons 𝑛𝑏𝑝𝑖 for
HTSC 𝑌𝐵𝑎2𝐶𝑢3𝑂7, based on the experimental value of the transition temperature 𝑇𝑐 = 93K (Section 6).

From (22), (23), it follows that

𝑁󸀠 (𝜔̃)𝑁 = 𝑇̃3/2𝐶𝑏𝑝 𝐹3/2 (𝜔̃̃𝑇) ,
𝑁0 (𝜔̃)𝑁 = 1 − 𝑁󸀠 (𝜔̃)𝑁

(27)

Figure 3 shows temperature dependencies of the number of
supracondensate particles 𝑁󸀠 and the number of particles𝑁0 occurring in the condensate for the above-indicated
parameter values 𝜔̃𝑖.

Figure 3 suggests that, as could be expected, the number
of particles in the condensate grows as the gap 𝜔𝑖 increases.

The energy of a TI-bipolaron gas 𝐸 is determined by the
expression

𝐸 = ∑
𝑛=0,1,2,...

𝑚𝑛𝐸𝑛 = 𝐸𝑏𝑝𝑁0 + ∑
𝑛 ̸=0

𝑚𝑛𝐸𝑛. (28)

With the use of (16), (17), and (28) the specific energy (i.e., the
energy per one TI-bipolaron) 𝐸(𝑇̃) = 𝐸/𝑁𝜔∗, 𝐸𝑏𝑝 = 𝐸𝑏𝑝/𝜔∗
will be

𝐸 (𝑇̃)
= 𝐸𝑏𝑝
+ 𝑇̃5/2𝐶𝑏𝑝 𝐹3/2 (𝜔̃ − 𝜇𝑇̃ )[ 𝜔̃̃𝑇 + 𝐹5/2 ((𝜔̃ − 𝜇) /𝑇̃)

𝐹3/2 ((𝜔̃ − 𝜇) /𝑇̃)] ,
(29)

𝐹5/2 (𝛼) = 2√𝜋 ∫∞
0

𝑥3/2𝑑𝑥𝑒𝑥+𝛼 − 1 , (30)

where 𝜇 is determined from the equation

𝑇̃3/2𝐹3/2 (𝜔̃ − 𝜇𝑇̃ ) = 𝐶𝑏𝑝, (31)

𝜇 = {{{
0, 𝑇̃ ≤ 𝑇̃𝑐;𝜇 (𝑇̃) , 𝑇̃ ≥ 𝑇̃𝑐. (32)
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Figure 3: Temperature dependencies of the relative number of
supracondensate particles 𝑁󸀠/𝑁 and the particles occurring in the
condensate𝑁0/𝑁 = 1 − 𝑁󸀠/𝑁 for the parameter values 𝜔̃𝑖, given in
Figure 2.

Relation of 𝜇 with the chemical potential of the system 𝜇
is given by the formula 𝜇 = (𝜇 − 𝐸𝑏𝑝)/𝜔∗. From (29)-(31)
expressions for the free energy Δ𝐹 = −(2/3)Δ𝐸, Δ𝐹 = 𝐹 −𝐸𝑏𝑝𝑁, Δ𝐸 = 𝐸 − 𝐸𝑏𝑝𝑁 and entropy 𝑆 = −𝜕𝐹/𝜕𝑇 also follow.

Figure 4 illustrates temperature dependencies Δ𝐸 = 𝐸 −𝐸𝑏𝑝 for the above-indicated parameter values𝜔𝑖. Break points
on the curves Δ𝐸𝑖(𝑇̃) correspond to the values of critical
temperatures 𝑇𝑐𝑖 .
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Figure 4: Temperature dependencies Δ𝐸(𝑇̃) = 𝐸(𝑇̃) − 𝐸𝑏𝑝 for the
parameter values 𝜔̃𝑖 presented in Figures 2 and 3.

The dependencies obtained enable us to find the heat
capacity of a TI-bipolaron gas: 𝐶V(𝑇̃) = 𝑑𝐸/𝑑𝑇̃. With the use
of (29) for 𝑇̃ ≤ 𝑇̃𝑐, we express 𝐶V(𝑇̃) as

𝐶V (𝑇̃) = 𝑇̃3/22𝐶𝑏𝑝 [𝜔̃
2

𝑇̃2𝐹1/2 (𝜔̃̃𝑇) + 6( 𝜔̃̃𝑇)𝐹3/2 (𝜔̃̃𝑇)
+ 5𝐹5/2 (𝜔̃̃𝑇)] ,

(33)

𝐹1/2 (𝛼) = 2√𝜋 ∫∞
0

1√𝑥 𝑑𝑥𝑒𝑥+𝛼 − 1 . (34)

Expression (33) yields a well-known exponential dependence
of the heat capacity at low temperatures 𝐶V ∽ exp(−𝜔0/𝑇),
caused by the availability of the energy gap 𝜔0.

Figure 5 shows temperature dependencies of the heat
capacity 𝐶V(𝑇̃) for the above-indicated parameter values 𝜔̃𝑖.
Table 1 lists the values of the heat capacity jumps:

Δ𝜕𝐶V (𝑇̃)𝜕𝑇̃ = 𝜕𝐶V (𝑇̃)𝜕𝑇̃
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑇̃=𝑇̃𝑐+0 −

𝜕𝐶V (𝑇̃)𝜕𝑇̃
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑇̃=𝑇̃𝑐−0 (35)

at the transition points for the parameter values 𝜔̃𝑖.
The dependencies obtained will enable one to find the

latent heat of transition 𝑞 = 𝑇𝑆, where 𝑆 is the entropy
of supracondensate particles. At the point of transition this
value is 𝑞 = 2𝑇𝑐𝐶V(𝑇𝑐 − 0)/3, where 𝐶V(𝑇) is determined by
formula (33). For the above-indicated parameter values 𝜔𝑖, it
is given in Table 1.

5. Current States of a TI-Bipolaron Gas

In the foregoing we have considered equilibrium properties
of a TI-bipolaron gas. The formation of Bose-condensate per
se does not mean that it has superconducting properties.
To demonstrate such a possibility let us consider the total
momentum of a TI-bipolaron:󳨀→

P = 󳨀→𝑃1 + 󳨀→𝑃2 +∑󳨀→𝑘𝑎+𝑘 𝑎𝑘, (36)

where 󳨀→𝑃1 and 󳨀→𝑃2 are the momenta of the first and second
electron, respectively. It is easy to check that

󳨀→
P commutes

with Hamiltonian (1) and therefore is a constant value, that
is, c-number.

For this reason, to consider nonequilibrium properties
and, particularly current states, we can use generalization of
Heisenberg transformation (4) such that

𝑆1 (P) = exp{𝑖(󳨀→P −∑
𝑘

󳨀→𝑘𝑎+𝑘 𝑎𝑘)}󳨀→𝑅. (37)

The general expression for the functional of the total energy
of a TI-bipolaron for

󳨀→
P ̸= 0 is given in [36]. TI-bipolarons

occurring in condensed state have a common wave function
for the whole condensate and do not thermalize in the state
when

󳨀→
P ̸= 0. In the supracondensate part, phonons whose

wave vectors contribute to
󳨀→
P (36) are thermalized and their

total momentum will be equal to zero.
Hence, all the changes arising in considering the case of󳨀→

P ̸= 0 concern only the expression for the ground state
energy which becomes dependent on

󳨀→
P, while the spectrum

of excited states (16), (17) remains unchanged. It follows
that, in passing over the critical point, the currentless state
suddenly becomes current which is in agreement with the
experiment.

6. Comparison with the Experiment

Figure 4 shows typical dependencies of 𝐸(𝑇̃). They suggest
that at the point of transition the energy is a continuous
function of 𝑇̃. This means that the transition per se occurs
without energy expenditure being a phase transition of the
second kind in complete agreement with the experiment. At
the same time transition of Bose particles from a condensate
state to a supracondensate one occurs with consumption
of energy which is determined by the value 𝑞 (Section 4,
Table 1), determining the latent heat of transition of a Bose
gas which makes it a phase transition of the 1st kind.

Byway of example let us considerHTSC𝑌𝐵𝑎2𝐶𝑢3𝑂7 with
the temperature of transition 90÷93K, volume of the unit cell0, 1734⋅10−21 cm−3, and concentration of holes𝑛 ≈ 1021 cm−3.
According to estimates [48], Fermi energy is equal to 𝜖𝐹
= 0,37 eV. Concentration of TI-bipolarons in 𝑌𝐵𝑎2𝐶𝑢3𝑂7 is
found from (24): 𝑛𝑏𝑝𝑛 𝐶𝑏𝑝 = 𝑓𝜔̃ (𝑇̃𝑐) (38)

with 𝑇̃𝑐 = 1, 6. Table 1 lists the values of 𝑛𝑏𝑝,𝑖 for the values of
parameters 𝜔̃𝑖 given in Section 4. It follows from Table 1 that𝑛𝑏𝑝,𝑖 ≪ 𝑛. Hence, only a small part of charge carriers is in
a bipolaron state which justifies the approximation of a low-
density TI-bipolaron gas used by us. This fact correlates with
recent experiments [49] where it was shown that only a small
part of electrons are in SC state. The energy levels of such TI-
bipolarons lie near Fermi surface and are described by the
wave function:

Ψ(󳨀→𝑟 ) = 𝑒𝑖󳨀→𝑘 𝐹󳨀→𝑟 𝜑 (󳨀→𝑟 ) , (39)
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Figure 5: Temperature dependencies of the heat capacity for various values of the parameters 𝜔𝑖: 𝜔0 = 0; 𝑇̃𝐶0 = 25, 2; 𝐶V(𝑇̃𝑐1) = 2; 𝜔1 = 0, 2;𝑇̃𝐶1 = 27, 3;𝐶V(𝑇̃𝑐1−0) = 2, 16;𝐶V(𝑇̃𝑐1+0) = 1, 9;𝜔2 = 1; 𝑇̃𝐶2 = 30;𝐶V(𝑇̃𝑐2−0) = 2, 46;𝐶V(𝑇̃𝑐2+0) = 1, 8;𝜔3 = 2; 𝑇̃𝐶3 = 32, 1;𝐶V(𝑇̃𝑐3−0) = 2, 7;𝐶V(𝑇̃𝑐3 + 0) = 1, 78.

which leads to replacement of 𝑇, involved in (6), by

𝑇 = −2 ⟨𝜑 󵄨󵄨󵄨󵄨Δ 𝑟
󵄨󵄨󵄨󵄨 𝜑⟩ + 2𝑘2𝐹, (40)

that is, reckoning of the energy fromFermi level (the last term
in the right-hand side of (40) in dimensional units is equal to2𝜖𝐹, where 𝜖𝐹 = ℏ2𝑘2𝐹/2𝑚∗).

According to our approach, superconductivity arises
when coupled states are formed. The condition for the
formation of such states has the form𝐸𝑏𝑝 < 0, (41)
where 𝐸𝑝 is the energy of a TI-polaron [41]. Condition (41)
determines the value of a pseudogap:

Δ 1 = 󵄨󵄨󵄨󵄨󵄨𝐸𝑏𝑝󵄨󵄨󵄨󵄨󵄨 . (42)

For Δ 1 ≫ 𝜔0 the value of a pseudogap can greatly exceed
both 𝑇𝑐 and the energy of the gap (i.e., 𝜔0). The expression
for the spectrums 𝐸𝑏𝑝 and 𝐸𝑝 (16)-(17) suggests that the
angular dependence of superconducting gap is completely
determined by the symmetry of the isoenergetic surface
of the 𝜔0(󳨀→𝑘 ). Earlier this conclusion was made by Bennet
[50], who proved that the main source of anisotropy of
superconducting properties is the angular dependence of the
phonon spectrum, though some contribution is also made by
the anisotropy of Fermi surface.

It follows from what has been said that formation of
a pseudogap is a phase transition preceding the phase
transition to the superconducting state. Recent experiments
[51] also testify in favor of this statement.
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Figure 6: Comparison of the theoretical (solid line) and experimen-
tal [29] (broken line) dependencies in the region of the heat capacity
jump.

In paper [39] correlation length for TI-bipolarons was
calculated. According to [39], in HTSC materials its value
can vary from several angstroms to several tens of angstroms,
which is also in agreement with the experiment.

Of special interest is to determine the characteristic
energy of phonons responsible for the formation of TI-
bipolarons and superconducting properties of oxide ceram-
ics. To do this let us compare the calculated values of the heat
capacity jumps with experimental data.

As is known, in BCS theory, a jump in the heat capacity is
equal to

𝐶𝑠 − 𝐶𝑛𝐶𝑛
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑇𝑐 = 1, 43, (43)

where 𝐶𝑠 is the heat capacity in the superconducting phase
and 𝐶𝑛 is the heat capacity in the normal phase and is
independent of the parameters of the model Hamiltonian. As
it follows from numerical calculations shown in Figure 5 and
in Table 1, as distinct from the BCS theory, the value of the
jumpdepends on the phonon frequency.Hence, the approach
presented predicts the existence of an isotopy effect for the
heat capacity jump.

As it is seen from Figure 6, the heat capacity jump
calculated theoretically (Section 4) coincides with the exper-
imental value in 𝑌𝐵𝑎2𝐶𝑢3𝑂7 [29], for 𝜔̃ = 1, 5, that is, for𝜔 = 7, 5meV. This corresponds to the concentration of TI-
bipolarons equal to 𝑛𝑏𝑝 = 2, 6 ⋅ 1018 cm−3. Hence, in contrast
to the widespread notion that in oxide ceramics supercon-
ductivity is determined by high-energy phonons (with energy70 ÷ 80meV [52]), actually, the superconductivity in HTSC
materials should be determined by soft phonon modes.

Notice that in calculations of the temperature of tran-
sition it was believed that the effective mass 𝑀𝑒 in (24) is
independent of the direction of the wave vector; that is,
isotropic case was dealt with.

In the anisotropic case, choosing principal axes of
vector 𝑘, as coordinate axes, we will get the quantity(𝑀𝑒𝑥𝑀𝑒𝑦𝑀𝑒𝑧)1/3 instead of the effectivemass𝑀𝑒. In complex
HTSC materials the values of effective masses lying in the
plane of layers 𝑀𝑒𝑥, 𝑀𝑒𝑦 are close in value. Assuming in

this case 𝑀𝑒 = 𝑀𝑒𝑥 = 𝑀𝑒𝑦 = 𝑀‖, 𝑀𝑒𝑧 = 𝑀⊥, we
will get instead of 𝐶𝑏𝑝, determined by (24), the value 𝐶𝑏𝑝 =𝐶𝑏𝑝/𝛾; 𝛾2 = 𝑀⊥/𝑀‖ is the parameter of anisotropy. Hence
anisotropy of effective masses gives for the concentration 𝑛𝑏𝑝
the value 𝑛𝑏𝑝 = 𝛾𝑛𝑏𝑝. Therefore taking account of anisotropy
can, in an order of magnitude, enhance the estimate of the
concentration of TI-bipolarons. If for 𝑌𝐵𝑎2𝐶𝑢3𝑂7 we take
the estimate 𝛾2 = 30 [52], then for the concentration of TI-
bipolarons we will get 𝑛𝑏𝑝 = 1, 4 ⋅ 1019 cm−3, which holds
valid the general conclusion: in the case under consideration
only a small number of charge carriers are in TI-bipolaron
state. The situation can change if the anisotropy parameter is
very large. Thus, for example, in layered HTSC Bi-Sr-Ca-Cu-
O the anisotropy parameter is 𝛾 > 100; accordingly, the con-
centration of TI-bipolarons in these compounds can have the
same order of magnitude as the total concentration of charge
carriers.

Another important conclusion emerging from taking
account of the anisotropy of effective masses is that the tem-
perature of the transition 𝑇𝑐 depends not on 𝑛𝑏𝑝 and𝑀‖ indi-
vidually, but on their relationwhich straightforwardly follows
from (24).

7. Essential Generalizations of the Theory

In the foregoing we considered the case of an ideal TI-
bipolaron gas. At small concentration of TI-bipolarons their
Coulomb interaction will be greatly screened which justifies
the use of the model of an ideal gas.

If the concentration of TI-bipolarons is large (e.g., 𝑛 =1021 cm−3, as was believed in Section 4), then such Bose gas
can no longer be considered to be ideal. Taking account of
Coulomb interaction between bipolarons becomes necessary.
For this purpose we can use Bogolyubov theory [53] for
weakly imperfect Bose gas, which implies that the spectrum
of elementary excitations with the momentum 𝑘 will be
determined by the expression:

𝐸 (𝑘) = √𝑘2𝑢2 (𝑘) + ( 𝑘22𝑚𝐵

)2, (44)

where𝑢(𝑘) = √𝑛𝐵𝑉(𝑘)/𝑚𝐵,𝑉(𝑘) is the Fourier component of
the potential of pairwise interaction between charged bosons:𝑉(𝑘) = 4𝜋𝑒2𝐵/𝜖0𝑘2, 𝑒𝐵 and 𝑚𝐵 are the charge and mass of a
boson, and 𝑛𝐵 is the concentration of bosons.

Hence it follows that

𝐸 (𝑘) = √(ℏ𝜔𝑝)2 + ( 𝑘22𝑚𝐵

)2, 𝜔𝑝 = √4𝜋𝑒2𝑛𝐵𝜖0𝑚𝐵

. (45)

𝜔𝑝 is the plasma frequency. According to (45), the spec-
trum of excitations of quasiparticles of an imperfect gas
is characterized by a finite energy gap which in the long-
wavelength limit is equal to 𝜔𝑝. The same result can be
arrived at if the Coulomb interaction between the electrons
is considered as a result of electron-plasmon interaction.



10 Advances in Condensed Matter Physics

According to [54], Hamiltonian of electron-plasmon interac-
tion coincides in structurewith FroehlichHamiltonianwhich
involves plasmon frequency instead of phonon frequency.
This straightforwardly leads to the energy gap equal to the
plasmon frequency 𝜔𝑝, if in (45) we put 𝑒𝐵 = 2𝑒, 𝑚𝐵 = 2𝑚∗,𝑛𝐵 = 𝑛/2, where 𝑛 is the electron concentration. Hence, for𝜔𝑝 < 𝜔0, the energy gap will be determined by 𝜔𝑝, while for𝜔𝑝 > 𝜔0 it will still be determined by 𝜔0.

Actually, in real HTSC, there are not only phonon and
plasmon branches, but also some other elementary excita-
tions which can take part in electron pairing. An example is
spin fluctuations. In generalization of the theory to the case
of interaction with various brunches of excitations which will
contribute to the ground state energy, the value of the gap and
the dispersion law of a TI-bipolaron are a topical problem.
Obviously, taking account of this interaction will lead to
an increase in the coupling energy of both TI-bipolarons
and TI-polarons. Therefore, a priori, without any particular
calculations one cannot say anything of how the condition
of stability of TI-bipolaron states determined by (41) will
change.

Another important problem is generalization of the the-
ory to the case of intermediate coupling of electron-phonon
interaction. Formally, the expression for the functional of
the ground state energy of a TI-bipolaron (14) is valid for
any value of the electron-phonon coupling constant. For this
reason such a calculation will not change the spectrum of a
TI-bipolaron; however it will alter the criteria of fulfillment
of the conditions of a TI-bipolaron stability (41).

8. Conclusive Remarks

In this paper we have presented conclusions emerging
from consistent translation-invariant consideration of EPI. It
implies that pairing of electrons, for any coupling constant,
leads to a concept of TI-polarons and TI-bipolarons. Being
bosons, TI-bipolarons can experience Bose condensation
leading to superconductivity. Let us list the main results
following from this approach. First and foremost the theory
resolves the problem of the great value of the bipolaron effec-
tive mass (Section 4). As a consequence, formal limitations
on the value of the critical temperature of the transition are
eliminated too. The theory quantitatively explains such ther-
modynamic properties of HTSC-conductors as availability
(Section 4) and value (Section 6) of the jump in the heat
capacity lacking in the theory of Bose condensation of an
ideal gas.The theory also gives an insight into the occurrence
of a great ratio between the width of the pseudogap and 𝑇𝑐
(Section 6). It accounts for the small value of the correlation
length [39] and explains the availability of a gap (Section 3)
and a pseudogap (Section 6) in HTSCmaterials. The angular
dependence of the gap and pseudogap gets a natural explana-
tion (Section 6).

Accordingly, isotopic effect automatically follows from
expression (24), where the phonon frequency 𝜔0 acts as a
gap. The conclusion of the dependence of the temperature of
the transition𝑇𝑐 on the relation 𝑛𝑏𝑝/𝑀‖ (Section 6) correlates
with Uemura law universal for all HTSC materials which

implies that the temperature of the transition is related to
the concentration of charge carriers divided by its effective
mass [55, 56]. The TI-bipolaron theory of superconductivity
developed in this paper gives an answer to the question of
paper [49], namely, where most of electrons disappear in
the superconductors analyzed. It lies in the fact that only a
small part of electrons are paired.The results obtained suggest
that in order to raise the critical temperature 𝑇𝑐 one should
increase the concentration of bipolarons.

Application of the theory to 1D and 2D systems leads to
qualitatively new results since the occurrence of a gap in the
TI-bipolaron spectrum automatically removes divergences at
small momenta, inherent in the theory of ideal Bose gas.
These problems were considered by the author in [57]. The
case of 1D-polaron was discussed in [58].

Conflicts of Interest

The author declares that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

The work was done with the support from the Russian
Foundation for Basic Research (RFBR Project no. 16-07-
00305).

References

[1] E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics, Part 2:
Theory of the Condensed State, Butterworth-Heinemann, 1st
edition, 1980.

[2] J. G. Bednorz and K. A. Müller, “Possible high T𝑐 superconduc-
tivity in the Ba-La-Cu-O system,” Zeitschrift für Physik B, vol.
64, pp. 189–193, 1986.

[3] V. L. Ginzburg, “Superconductivity: the day before yesterday—
yesterday— today— tomorrow,”Physics-Uspekhi, vol. 43, p. 573,
2000.

[4] S. L. Kakani and S. Kakani, Superconductivity, Anshan, China,
2009.

[5] T. Tohyama, “Recent progress in physics of high-temperature
superconductors,” Japanese Journal of Applied Physics, vol. 51,
Article ID 010004, 2012.

[6] S. Kruchinin, H. Nagao, and S. Aono, Modern Aspects of
superconductivity. Theory of superconductivity, World Scientific
Publishing Co. Pte. Ltd., River Edge, NJ, USA, 2011.

[7] K. P. Sinha and S. L. Kakani, “Fermion local charged boson
model and cuprate superconductors,” Proceedings – National
Academy of Sciences, India. Section A, Physical Sciences, vol. 72,
p. 153, 2002.

[8] K.H. Benneman and J. B. Ketterson, Superconductivity: Conven-
tional and Unconventional Superconductors 1-2, Springer, New
York, NY, UK, 2008.

[9] J. R. Schrieffer, Theory of Superconductivity, Westview Press,
Oxford, UK, 1999.

[10] A. S. Alexandrov, Theory of Superconductivity from weak to
strong oupling, IOP, publishing, Bristol, UK, 2003.

[11] N. M. Plakida, “High temperature cuprate superconductors:
experiment,” in Theory and Applications, vol. 166 of Springer



Advances in Condensed Matter Physics 11

Series in Solid-State Sciences, pp. 479–494, Springer, Berlin,
Germany, 2010.

[12] I. Askerzade, “Physical Properties ofUnconventional Supercon-
ductors,” inUnconventional Superconductors, vol. 153 of Springer
Series inMaterials Science, pp. 1–26, Springer BerlinHeidelberg,
Berlin, Germany, 2012.

[13] O. Gunnarsson and O. Rosch, “Interplay between electron–
phonon and Coulomb interactions in cuprates,” Journal of
Physics, vol. 20, Article ID 043201, 2008.

[14] T.Moriya andK. Ueda, “Spin fluctuations and high temperature
superconductivity,” Advances in Physics, vol. 49, no. 5, pp. 556–
606, 2000.

[15] D. Manske, Theory of Unconventional Superconductors,
Springer, Heidelberg, Germany, 2004.
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