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Abstract. We consider various mechanisms of long-range electron transfer in DNA which enable
us to explain recent controversial experiments. We show that continuous super-exchange theory can
explain the values of electron rate constants in short fragments of DNA. The soliton-type electron
transfer in long segments of DNA is also dealt with.
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1. Introduction

Both experimental and theoretial efforts have been focused recently on the problem
of long-range electron transfer (ET) through a DNA helix [1–12]. The experimental
results on long-range electron transfer in duplex DNA remain controversial.

A well-defined linear helix and repetitive structure is established in the DNA
double strand which consists of stack of pyrimidine purine base pairs which are
stabilized in space by a ribosyl phosphodiester double strand.

The question of whether DNA with stacked array of aromatic heterocyclic base
pairs has structurally inherent potential for transport of over greater distances has
been discussed for a long time. It was suggested many years ago that the overlap-
pingπ orbitals of the nucleotic bases form a common delocalized electron system
of the whole DNA macromolecule and so a Bloch type description of the electron
states becomes possible [13–15].

Since the energy bands associated withπ stacks are narrow the expected mobil-
ities of charge carriers in DNA should be low. The drift mobility of electrons and
holes was calculated for various periodic DNA models using LCAO orbitals [16].
It was shown that for homonucleotides and poly (A–T), poly (G–C) systems the
mean free path of charge carriers at room temperatures is about 20÷ 50 Å, while
for the more complicated poly (A–T, G–C) systems the mean free path is less than
5 Å.

This analogy with the previously described mechanism was used to explain the
recent Meggers et al. experiments [7] on motion of electron holes in the DNA
structure [8]. According to Ratner [8] depending on the energy of excitation, one
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would expect different mechanistic behaviour: if the ‘bridging states’ (in DNA,
these are the intervening base pairs) are very high in energy compared to the initial
and final states we should observe superexchange transport, i.e. a rapid exponential
decay of the transfer rate. If the intermediate bridging states are comparable in
energy, or lower in energy, than the initial state, then one would expect hopping
behaviour that decays slowly with distance.

The investigations of electron transfer in a series of structurally well-defined
donor-bridge-acceptor (DBA) molecules that incorporate tetracene as the donor
and pyromellitimide as acceptor, linked byp-phenylenevinylene oligomers of vari-
ous lengths provide support for hopping mechanism [9]. Photo-induced electron
transfer in this series exhibits very weak distance dependence for donor-acceptor
separations as large as 40 Å, with rate constants of the order of 1011 s−1. These
findings also demonstrate the importance of energy matching between the donor
and bridge components for achieving molecular-wire behaviour.

The importance of the efficient charge injection into the bridge with nearly
matched energy of the highest occupied electronic state of the donor to the lowest
unoccupied state of the bridge has long been recognized [10–12]. However any
experimental demonstration of this effect has been lacking as yet. As the energy
between the highest occupied state of the donor and an empty eigenstate of the
bridge decreases, the rate of charge conduction through the bridge increases rap-
idly. The fast rate of electron transfer in [9] was achieved by lengthing the bridge
which caused the lowest unoccupied molecular orbital energy of the bridge to
approach that of donor to within 0,1 eV.

Experiments of several research teams performed in recent years have indicated
the efficient charge migration within DNA duplex over a large distances up to 20÷
40 Å [1–4].

Mead and Kayyem reported the results of ET experiments in 8-base-pair duplex
with ruthenium metal complexes coordinately bound to the 2′ – ribose positions
at each strand’s 5′ – end [2, 3]. The metal-to-metal distance between the two
ruthenium states in the 8-mer duplex was 20,5 Å. The relevant edge-to-edge dis-
tance between complexes for the ET process was of the order of 12,5 Å. Mead
and Kayyem measured the ET rate between the donor Ru (II) (NH3)4 (Pyridine)
(amine)2+ and the acceptor Ru (bpy)2 (imidazole) (amine)3+ to be 1,6(±0,4) ·106

s−1.
Brun and Harriman studied distance dependence of rate constants for photo-

induced ET between two sets of intercalated donors and acceptors in CT–DNA [4].
The closest D/A edge-to-edge separation distances in this experiment correspond
to 3, 4 and 5 intervening DNA base pairs or 10,2, 13,6 and 17,0 (Å). It was demon-
strated that ET rate exponentially decays with distance with the decay coefficient
β = 0,9 Å−1 close to that obtained for ET in proteins [17].

Beratan et al. reported the results of quantum-chemical calculations for the
above DNA mediated ET experiments [5, 6]. They obtainedβ = 1,2 Å for Mead
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and Kayyem experiment andβ = 1,6 Å−1 for Brun and Harriman system. The
latter is not in good agreement with experimentally determined value of 0,9 Å−1.

The detailed quantum-chemical calculations [5, 6] cannot even qualitatively ex-
plain the results of Barton et al. measurements of Ru- to -Rh ET for a tethered and
intercalated D/A pair. The closest edge-to-edge separation between the intercalated
ligands for the two metal complexes, dppz and phi, was 37,4 Å, corresponding to
11-intervening base pairs. The edge-to-edge separation of the D/A complexes in
this duplex is 26 Å. For ET rate the valueKET ≥ 109 s−1 was reported.

In other words for the distance almost twice longer than in Mead and Kayyem
experiments Barton et al. obtained the rate of ET more than 103 times higher. These
results demonstrate more complexity than exponential behaviour of ET in DNA.

In this paper we will consider a simple model illustrating the superexchange
mechanism via self-organized electron state (SES) in DNA. The possibility of
soliton-like excitation to form in the bridge and to transfer charge in DNA will
also be discussed.

The paper is arranged as follows. In Section 2 we introduce a mathematical
model based on the description of DNA as a deformed thread and derive dynamical
equations of an excess electron interacting with finite thread.

In Section 3 we discuss a special case of infinite thread. In this limiting case the
soliton type solution of the above equations exists.

In Section 4 we deal with a discrete model of nondeformed and deformed DNA
model. We show that the discrete model turns into the continuous model considered
in Section 3 in the case of extended electron states.

In Section 5 we consider a discrete number of solutions to the nonlinear equa-
tions of continuous model which correspond to the finite DNA thread.

In Section 6 we use the obtained solutions to calculate the superexchange elec-
tron transfer in DNA. It is shown that the value of the calculated matrix element of
the electron transfer TDA is in good agreement with Barton et al. experiment.

In Section 7 we compare the soliton mechanism of electron transfer in DNA
considered in Section 3 with the superexchange mechanism through the self-organized
electron states considered in Section 5.

2. Mathematical model

A self-consistent excess electron + DNA deformation state is considered as a SES
suitable to explain ET. The central point of the subsequent discussion is the ex-
tended nature of SES and the existence of a critical size of a DNA molecule in
which such states can arise. To introduce such states let us consider DNA as an
elastic thread with length equal to 2R. An electron, inserted in this thread produces
displacementu(x) at each pointx. The density of elasticity energyUe of the thread
will be equal to:

Ue = k

2
u′2(x), |x| ≤ R. (1)
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Wherek is the elasticity constant. If the electron energy is reckoned from the non-
deformed state, the energy of the electron interaction with deformation takes the
form:

Uint = −Gu′(x) |ψ(x)|2. (2)

WhereG is the deformation potential constant,ψ(x) is the electron wave function.
The total Lagrangian:L = Lkin + Lint + Lpot , whereLkin represents the kinetic
electron energy,Lint -interaction andLpot-potential energy, takes the form:

L = ih̄

2
(ψ∗ψ̇ − ψ̇∗ψ)− h̄2

2m
(9 ′∗9 ′)+G9∗u′9+

+ρ u̇
2

2
− k

2
u′2, |x| ≤ R (3)

L = ih̄

2
(9∗9̇ − 9̇∗9)− h̄2

2m
(9 ′∗9 ′), |x| ≥ R. (4)

wherem is the electron effective mass,ρ is the density of the considered thread,h̄ is
the Planck constant divided by 2π . The dynamical Euler equations corresponding
to Lagrangian (3), (4) are:

∂

∂t

∂L

∂9̇∗
− δL

δ9∗
= 0,

∂

∂t

∂L

∂u̇
− δL
δu
= 0. (5)

Variation ofL with respect to9(x) andu(x) leads to the following equations for
the wave function9 andu:

ih̄
∂9(x, t)

∂t
+ h̄2

2m

∂29(x, t)

∂x2
+G9(x, t) ∂

∂x
u(x, t) = 0, |x| ≤ R (6)

ρ
∂2

∂t2
u(x, t) − k ∂

2

∂x2
u(x, t) +G ∂

∂x
|9(x, t)|2−

−G[|9(x, t)|2δ(x − R)− |9(x, t)|2δ(x + R)] = 0, |x| ≤ R (7)

ih̄
∂

∂t
9(x, t) + h̄2

2m

∂2

∂x2
9(x, t) = 0, |x| > R (8)

whereδ(x) is Dirac delta-function. The boundary conditions for Equations (6)–(8)
correspond to those of the rod with free boundaries. These conditions correspond
to a free DNA molecule in solution and take the form:

∂

∂x
u(x, t)

∣∣∣|x|=R = 0. (9)

In addition to these boundary conditions the condition of normalization for each
solution of Equations (6)–(9) should be fulfilled:
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Figure 1. Soliton-like solution in DNA.

∫ ∞
−∞
|9(x, t)|2 dx = 1. (10)

Below we will consider particular important cases of general Equations (6)–(9).

3. Infinite DNA thread

This case corresponds to the limitR → ∞. The system of Equations (6)–(9)
reduces to the form:

ih̄
∂

∂t
9(x, t) + h̄2

2m

∂2

∂x2
9(x, t)+G9(x, t) ∂

∂x
u(x, t) = 0, (11)

ρ
∂2

∂t2
u(x, t) − k ∂

2

∂x2
u(x, t) +G ∂

∂x
|9(x, t)|2 = 0. (12)

Equations (11), (12) are analogous to those considered by Davydov [18]. Equation
(11), (12) have a soliton-type solution;

9(x, t) = exp
[
it
h̄

(
mv2

2 − w
)]

exp
[
i mv
h̄
(x − vt)

]
9(x − vt) (13)

u(x, t) = u(x − vt) (14)

wherew – electron energy,v – is soliton velocity. Substitution of (13), (14) into
(11), (12) yields:

9(x − vt) = ±
(√

2rch
x − vt − x0

r

)−1

(15)

u(x − vt) = G

2k

1

(1− v2/c2)
th
x − vt − x0

r
(16)

w = − h̄2

2mr2
(17)
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wherex0 is the arbitrary reference point,c is the sound velocity:c = √k/ρ, andr
is the characteristic size of soliton:

r = 2h̄2

m

k

G2

(
l − v

2

c2

)
. (18)

One soliton solution (15) for electron in deformed DNA is shown in Figure 1. The
total energy of soliton E can be found by integrating the density energyH(x) over
the whole space:

E =
∫ ∞
−∞

H(x) dx (19)

H(x) = h̄2

2m
(9 ′∗9 ′)−G9∗u′9 + 1

2
ρu̇2+ 1

2
ku′2. (20)

It follows from (19), (20) that:

E = m

24h̄2

G4

k2

5v2/c2− 1

(1− v2/c2)3
. (21)

Expanding (21) in series ofv2/c2 for small velocitiesv � c we can obtain from
(21) the effective mass solitonM:

M = m
[
1+ G4

6k2c2

]
. (22)

Thus the obtained solution describes the electron in DNA as a particle with total
energy E and effective mass M. We will discuss the applicability of these results
for the explanation of long-range electron transfer in DNA in Section 6 and 7.

4. Discrete models

A. THE CASE OF NON-DEFORMED CHAIN

The basic Hamiltonian in superexchange theories of electron transfer through the
chain of molecules has the form [19]:

H =
∑
i

αia
+
i ai +

∑
i,j>i

vij (a
+
i aj + a+j ai) (23)

wherea+i , ai are the creation and annihilation electron operators on molecule with
numberi, αi represents the energy of electron localized oni-th molecule,vij are
the exchange integrals.

The general form of Hamiltonian (23) includes the case considered in electron
transfer theory when one value ofi corresponds to donor:i = D and anotheri′ to
acceptor:i′ = A.

If we take the wave function of electron in the form
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|9 >=
∑
i

bi(t)a
+
i |0> (24)

the equation for amplitudesbi is given by:

ih̄
∂bi

∂t
= vi−1,ibi−1 + αibi + vi,i+1bi+1 (25)

Equation (25) represents the case when the exchange integralsvij differ from zero
only for nearest neighbours of the molecule.

To solve the problem of electron transfer we need to calculate the probability
for an electron initially residing at sitei to pass on to the sitej during the timet .
The amplitude of this probability can be defined asbij .

Let the solution of Equation (25) be expressed asB(t) = [bij (t)] with the initial
conditionsbij (0) = δij . Accordingly Equation (25) takes the form:

ih̄
∂B

∂t
= BA (26)

where the transition matrixA is defined by:

A =


α0 v0 0 0 · · ·
v1 α1 v1 0 · · ·
0 v2 α2 v2 · · ·
· · · · · · ·

 . (27)

To find solutions to matrix equations (26) we should determine of eigenvalues and
eigenfunctions of the matrixA (27).

It can be shown [20, 21] that if allαi andvi are less than a finite constantM,
the spectrum of eigenvalues ofA extends over a finite interval of the negative real
axis and becomes continuous over this interval in the limit of infinite chain. The
general solution to Equation (26) takes the form:

B(t) = exp(−ih̄tA). (28)

In particular case, whenvi = v andαi = α = −2v, the analytical solution for
bij (t)-amplitudes can be obtained:

bij (t) = i(j−i)e2ivt/h̄[Ji−j (2vt/h̄)− (−1)iJi+j (2vt/h̄)] (29)

whereJv(z) is the Bessel function. It follows from (29) that in the case of periodic
chain the amplitudesbij (t) are the oscillation functions of timet . The probabil-
ities of finding an electron at each site of the considered chain exhibit the same
oscillations.

B. THE CASE OF THE DEFORMED CHAIN

In this case electron energy oni-th moleculeαi depends on the value of molecules
displacements:
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αi = αi(r1, . . . , rN ). (30)

The total HamiltonianH takes the form:

H̃ = H + T + V (31)

whereH is determined by (23).T andV are the kinetic and potential energies of
the chain:

T =
∑
i

Mi

2
ṙ2
i , V =

∑
i

ki

2
(ri − ri+1)

2 (32)

whereMi is the mass ofi-th molecule,ki is the elasticity constant characterizing
the deformation betweeni-th and(i + 1)-th sites.

The equation for amplitudesbn of wave function (24) takes the form:

ih̄
∂bn

∂t
= αnbn +

∑
j

(j>n)

vnj bj +
∑
i
(i<n)

vinbi . (33)

To describe the motions of molecules we can use the Newton equations. In this
case the Newton equations of motion determined by HamiltonianH̃ take the form:

Mnr̈n = knrn+1 + kn−1rn−1 − (kn + kn−1)rn −
N∑
i=1

∂αi(r1, . . . , rN )

∂rn
b∗i bi . (34)

Nonlinear dynamical system (33), (34) determines the electron transfer in the de-
formed chain. Let us consider the linear dependence of valuesαi on deformation:

αi(r1, . . . , rN) = α0
i + α′i(ri+1 − ri−1). (35)

Is the case of uniform chain:α0
i = α, α′i = α′, vi = v we can consider the

continuous limit, which is valid when the characteristic electron size is larger than
the intermolecular distance1.

Let us definern(t) = r(n, t) andbn(t) = b(n, t). Introducing the continuous
dimensionless variableζ = x/1 instead of discrete variablen we can write:

r(ζ ± 1, t) = r(ζ, t)± ∂r(ζ, t)
∂ζ

+ 1

2

∂2r(ζ, t)

∂ζ 2
(36)

b(ζ ± 1, t) = b(ζ, t)± ∂b(ζ, t)
∂ζ

. (37)

Using (35), (36) and (37) we get instead of (33), (34) the equations:

ih̄
∂b

∂t
=
[
α + 2α′

∂r

∂ζ

]
b + v

(
2b + ∂

2b

∂ζ 2

)
(38)
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Figure 2. a) 9(x) is the wave function of self consistent state; b)9D,9A are the wave
functions of donor and acceptor; c) The sequence of base pairs and donor-acceptor positions
for Barton et al. experiment.

Mr̈ = k ∂
2r

∂ζ 2
+ 2α′

∂

∂ζ
b∗b. (39)

With the replacement:

b→ 9 exp

[
− i
h̄
(α + 2v)

]
, r → u, 2α′1→−G, (40)

v12→ h̄2/2m, k12→ k, M → ρ

Equations (38), (39) take the form of Equations (11), (12) for infinite elastic thread,
considered in Section 3.

5. The short thread of DNA

In Section 3 we considered the case of infinitely long DNA thread. As pointed out
above the DNA duplexes, exploited in electron transfer experiments are relatively
short (of length 1,5–2 helical turns, Section 1). These duplexes can be considered
quite rigid across the duplex. For such short thread of DNA the soliton solution
obtained in Section 3 is not valid.

Below we will consider the stationary solutions of Equations (6)–(9) for a short
thread. In this case Equation (7) with the boundary conditions (9) leads to the
following expression for equilibrium deformation of the molecule in the presence
of the electron:

u′(x) = G

k
92(x)− G

k
92(R), |x| ≤ R, (41)
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u′(x) = 0, |x| ≥ R. (42)

Using (41), (42) Schroedinger Equation (6) in stationary case takes the form:

h̄2

2m
9 ′′(x)+ G

2

K
θ(R − |x|)[92(x)−92(R)]9(x)− |w|9(x) = 0. (43)

Equation (43) was earlier considered in [22, 23]. It has a discrete number of soliton-
type solutions: ifR is larger than the critical valueR1 = 5,71 kh̄2/2mG2 a one-
soliton solution exists. It has a sharp maximum at the origin of the coordinates and
tends to zero as the distance from the origin increases. IfR > R2 > R1 where
R2 = 33,2 kh̄2/2mG2 then in addition to the one-soliton a two-soliton solution
appears and so on. Figure 2 shows the solution of Equation (43) which has two
sharp maxima, occurring at the distance equal to±2R/3 from the origin ofx axis.

6. Superexchange electron transfer through DNA

As seen from Figure 2 donor and acceptor occur in the region of maxima of the
wave function9(x). We will model electron states of donor and acceptor by a deep
and narrow rectangular potential wells whose centers coincide with maxima9(x)

(Figure 2). Thus we can consider the wave functions of donor9D and acceptor9A
to be totally localized in the potential wells. Under these assumptions the overlap
matrix element of9D,9A and9 is equal toI :

I =
∫ ∞
−∞

9D(x)9(x) dx ≈ 9(xD)
∫ ∞
−∞

9D(x) dx. (44)

The value of9(xD) represents the maximum of two-soliton solution. For suffi-
ciently large molecular sizeR this maximum is equal to:

9(xD) = 1

4

G

h̄

√
m

k
. (45)

If we put the depth of the rectangular potential well sufficiently deep the donor
(acceptor) wave function can be written as:

9D(x) =
√

2

d
sin

π

d
x,

2

3
R − d ≤ |x| ≤ 2

3
R. (46)

It follows from (45), (46) that the value of the overlap integral is:

I = l√
2π

G

h̄

√
md

k
. (47)

According to superexchange theory the rate of transfer to acceptor through inter-
mediate state is proportional to the square of matrix element between donor and
acceptorTDA:
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TDA = I 2w2

|1E| , (48)

where1E is the energy difference between the donor electron state and two-soliton
state. The energy of two-soliton state determined by Equation (43) is equal to [22,
23] (see appendix):

|w| = 1

32

G4

k2

m

h̄2 . (49)

The obtained formulas (47)–(49) determine the superexchange expression for mat-
rix element which will be estimated below.

7. Numerical estimations and discussion

The elasticity constantk in (47)–(49) can be estimated from the following consid-
eration. Characteristic frequencies of longitudinal oscillations of a DNA molecule
w are of the order of picoseconds. The molecular groups involved in the molecular
structure displace by about 0,1 of the distance between the nearest groups. If we
put the distancẽa between the groups equal to 1 Å and the characteristic frequency
h̄w equal to 10−3 eV then from the equalityk(u′(a))2/2 = h̄w, u′(a) = 0,1
we find the elasticity constant to bek = 3,2 · 10−5 dyne. The typical values of
deformation potential in solids is about several electron-Volts. Assuming thatG

has the same values in DNA we takeG equal to 1 eV. If we put the effective
electron mass equal to 10−27 g then from (49) we get|w| = 0,13 eV. The value of
1E in DNA is equal to|1E| ' 2 eV [5, 6]. If we putd = 1 Å then from (47),
(48) we get the value of the matrix elementTDA = 3 · 10−4 eV. In [5, 6] the value
of the matrix element (reorganization energy 0,4 eV, donor-acceptor free energy
difference1J = −0,75 eV and the reaction rateket = 3 · 109 s−1) was calculated
to beTDA = 1,9 · 10−4 eV. Our valueTDA = 3 · 10−4 eV leads to the transfer rate
twice greater than that obtained in [1]. In this connection it is worth to emphasize
that in experiments [1] a vary fast emission quenching was observed so that the
rate of transfer is higher than 3· 109 s−1. Thus our results are not contradictory
to the experiment [1]. It follows from (48) that the matrix element does not decay
exponentially as the transfer distance increases. Moreover (48) suggests that it does
not depend on distance at all. If it was the case then an electron would be able to
transfer through arbitrary distance for a very short time∼ 10−9 s. In fact the model
developed is not valid for very large transfer distances. We can estimate the limiting
distance from the inequality:̄h/mR2

max≥ h̄w. For the above parameters it gives the
valueRmax ∼ 100 Å. For distancesR > RmaxET exhibits the usual exponential
behaviour. According to [22, 23] the minimal distance for which the considered
SES is possible is equal toRmin = 33,2 kh̄2/2mG2 = 21 Å, i.e. the minimal
duplex lengthlmin = 2Rmin = 42 Å.

It is important that control experiments on photochemical DNA cleavage at the
intercalation site proved that the positions of intercalation (donor and acceptor) are
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usually two base pairs away from the ends (Figure 2). For Barton et al. experiment
with ultrafast electron transfer [1] the length of 15-mer DNA duplex was larger
thanlmin. Thus only on the interval 40÷ 200 (Å) the nonexponential electron rate
dependence is possible. For Mead and Kayyem [2, 3] and Brun and Harriman [4]
experiments the DNA length was less than 40 Å and usual exponential dependence
was observed.

Finally we can discuss the possibly of one-soliton electron transfer in DNA
(Section 3). The criterion for the formation of soliton of this type in short DNA
thread is less rigorous than that for two-soliton solution and requires the DNA
length to be longer than 2R1 = 11,42 kh̄2/2mG2. For the above parameters this
yieldsl > 7,3 Å. According to formula (21) the total energy of this soliton is equal
to E = −0,17 eV. This energy is much less than the gap between the occupied
orbitals and the bottom of the conductivity band in DNA. Thus the soliton mech-
anism of charge transfer is unprobable in experimental conditions [1–4]. However
it can be realized if the conditions of experiment are changed. With this soliton
mechanism of long-range electron transfer the transfer rate depends only slightly
on the transfer distance if at all.

The possibility of soliton to arise and to mediate electron transfer has been
reported in recent experiments [24]. The direct measurements of electrical current
as a function of the potential applied across a few DNA molecules associated into a
single rope of length at least 600 nm suggests efficient conduction through the rope.
This distance-independent transfer also occurs in the experiments with repairing
and oxidation reactions in DNA [25–27].

In our opinion further measurements of electron transfer rate with regard to dif-
ferent transfer distances and DNA sequences are required to clarify the mechanism
of long-range electron transfer in DNA.

The work is supported by RFBR project No. 98-04-48828.

Appendix

Let’s pass on its Equation (43) to the dimensionless variables using the formulas:

9(x) =
√
k|w|

2G2h̄2Y (x̃) (A1)

x =
√

h̄2

2m|w| x̃. (A2)

Than (43) is rewritten in the form:

Y ′′(x̃)+ [Y 2(x̃)− Y 2(a)]Y (x̃)− Y (x̃) = 0, |x̃| ≤ a (A3)

Y ′′(x̃)− Y (x̃) = 0, |x̃| > a (A4)
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.
Figure 3. Solutions of Equation (A3), (A4) for different values ofa: a)a= 5.0,ζ = 20.0;
b) a= 3.0,ζ = 35,6; c)a= 3.0,ζ = 81,7 whereζ = 2G2 Rm/kh̄2

where:

a = R
√

2m|w|/h̄2.

Analytical analysis of Equations (A3), (A4) leads to the following conclusions
[22, 23]:

1) For each positivea the problem (A3), (A4) has an infinite number of solu-
tions. The solutions with numbern hasn-maxima (Figure 3) and looks like a
segment of periodic function with the periodT :

T = 4a

2n − 1
. (A5)
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2) The relative positions of maxima and minima of solutions on the segment
[−a, a] are independent ofa. For example, forn = 2 there exists one minimum at
x̃ = 0 and two maxima at

x̃ = ±2

3
a. (Figure 2b)

3) Oscillation amplitude of solution is independent ofa andn:Mn(a)−mn(a) =√
2.
4) The maximumM(a) is unbound fora→ 0:

Mn(a) ≈ Cn

a
, Cn = π(2n− 1)

2
√

2
. (A6)

5) The solution withn = 1 tends to ‘soliton’ solution asa→∞:

Y (x̃) = 2

coshx̃
(A7)

(10), (A1), (A2) yield the expression for the electron energyw:

w = − 2

02

G4m

k2h̄2 (A8)

where0 is a function of parametera : 0 = 0(a). As a →∞ the value0 for two
maximum solution with two maxima tends to 8. Fora > 6 the deviation of0(a)
from its asymptotical value is less than 6%.
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