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A new approach to the problem of electron siates In the proteln molecwle |8 described. A
‘diglectric cavity’ model for a proteln globule ks used as a basls to consider the extended states
wihich are maostly formed by the polarzation field of the protein macromolecule. bn 8 protein
sodution the size of such a state can be compared with the size of the macromoloculs. The share
of the extended states in the biomoleculsr processes of charge transfer s discussed. Elactiron
energies of the ground and the first excited self-consistent states are calculated. Typlcal valuas
of the predicted energies of absorption bands and luminescence ane found to be ca 1000 nm far
the grownd state absorption band and ca 2000 nm for the excited state luminescence, Various
ways of axparimantally observing such states are discussed.
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INTRODUCTION

The large-distance electron transfer is one of the
central problems of molecular biology. It is a well
established fact that the eleciron can move large
distances in  biological systems, Theoretical
studies in this feld were stimulated by de Vaul
and Chance,' who measured the temperature
dependence of the rate of ¢lectron transfer from
cytochrome ¢ 1o chlorophyll. Currently, the pre-
dominant point of view considers this muli-
iunnelling transpori with an  unambiguously
identifiable intermediate 1o be one of the possible
mechanisms of this phenomenon.®* In applica-
tion o biological systems, the theoretical founda-
tions of electron transfer are due 1o Foerster,**
Marcus,* Jortner” and Hopfield,** who in turn
proceeded from the idea of non-radiatory electron
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rransfer in condensed media, which was first
suggested by Pekar ™ and Huang and Rhys. "' The
idea of polaron states in condensed media is the
basic one for the theory of non-radiative electron
transfier, and allows a deep insight into the
processes  of electron  transfer in biological
sysiems. Therefore, research into the theory of the
polaron in condensed systems may significantly
broaden our knowledge of the electron states and
transfer in biological systcms.

The most general representation of the polaron
may be given by the picture of an electron which,
if placed in a polar medium, goes to a self-
localized state where it does not form chemical
bonds with the atoms of the medium. The polaron
may be imagined as an electron being trapped by
a potential well formed by electron-induced polar-
ization of the surrounding molecules of the
medium, " Using this representation, it was dis-
covered that there are multiple, not just one,
discrete polaron states which have their own
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potential wells consistent with the electrons
trapped. "' One of the principal conseguences is
that even the first excited self-consistent pelaren
state has a large excitation region, and may
include ca 10°~10" or more molecules of the
medium for water, ammonia and other polar
liquids, These findings in tum point 0 the
necessity for critically analysing the problem of
large-disiance eleciron transfers, namely their bio-
logical role and impact. This paper is concerned
with studies of these states in protein macromol-
ecules. We shall show that the allowance for the
electron large-radius states may lead to many new
resulis. The very Fact that they exist suggests new
iypes of absorption and luminescence in solutions
of globular proteins. For a spherically sym.
metrical prodein with an electron acceplor in the
centre of the globule, the presence of an excited
polaron state of large radius implies isotropy of
binary chemical reactions under excitation.

This paper is intended to make the physical rep-
resentation of the polaron in a condensed medium
in agreement with the representation of the
polaron properties of the protein molecule, We
shall formulate simple mathematical models of
the polaron states in the protein and discuss some
of the effects to which they lead.

A CONTINUUM MODEL

To introduce what s meant by large-radius chee-
tron stafes in globular protein macromolecules it
i mecessary 10 examine continuum represen-
tations of these objects. It is also desirable to
discuss the hierarchy of the continuum models
that we shall use, The representation of a protein
macromolecule that takes the form of a sphere in
solution as its microphase was introduced by
Bresler and Talmud,"™ who proceeded from
hydrophobic properties of the protein. Progress in
the modelling of protein globules led, in turn, fo
a whole zet of electrosiatic models. ' The
simplest of them, which is the model of dielecine
cavity, is shown in Fig. 1. The model assumes that
£1 = £w, which corresponds to a low static diclec-
tric permittivity of the protein medium compaced
with the strongly polarized solvent. We stress that
this madel, although very simple, can give a quali-
tative explanation of many experimental findings
on protein transport and electrophoresis, "’

A more realistic model of a three-layer globule
is shown in Fig. 2. This model allows for the con-
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Figuse 1, A two layer model of the protpn globule.
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Figure 2. A throe-layar modal af tha pratoin glabuly,

tribution of different factors 1o dielectric permit-
tivity in the region B, < r < R, The factors are
the presence of amino acids residues, the penetra-
tion of water molecules into the superfcial layer,
the non-smoothness of the protein surface, elc,
We assume that the solvent molecules cannot pen-
ctrate into the region r< By In this model
£y < £3 < £y. Physical values of dielectric permit-
tivities can be taken from an experiment: £p = 4 is
the value for N, N-dimethylacetamide, which is
ihe monomeric analogue of the protein peptide
framework (the solvent impervious region
< By ); ep o= B0 s the value for wialér as a solvent;
and the layer 8, < r < R; is ascribed a mean value
of £z = 40, which in 3 more general sense is a par-
ameter of the model. There are many models
which assume that diclectric permittivity inside
the globule depends on a coordinate {such as
e=|r|),"™ and wvarious non-local continuum
models of diglectric cavities. '®

While substantiating a mathematical model of
polaron-iype  ebectron  states im the protein
globule, the ratio {F¥a is the most imporiant par-
ameter, where & is the mean distance between (wo
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Figura 3. (&) A plare projection of tha instaniansdus con:
figuration of the main chain [-N—-C"—C—la of 8 Tenng-
doxin molecule and (bl oveslapped projecticng for Len
consecutive configurationg of thes mobsouls taken with o
tirme Af of OLG ps.

neighbouring atoms of the protein molecule and
{ry is the effective polaron radius. The eslimate @
draws a clear distinction between a protein macro-
melecule and an fonic crystal for which the crie
terion {r3fa w1 shows that the model 5 a
continuum, In the ionic crystal polarization is
caused by a small deviation of ions from their
cquilibrium siates, 50 that § = g, where @ 5 the
lattice constant. The protein molecule requires an
additional averaging if the lifetime of the electron
state is much larger than the characteristic time
for oscillation of twisting degrees of frecdom and
for deviations of macromolecular palar groups,
which normally is less than 107" 5, This situation
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is illustrated in Fig. 3, which i the resull of a
malecular-dynamic computer simulation. In this
way for the less long-lived states the model of a
polar medium is ‘more continuum” in the protein
molecule than in the jonic erystal.

A POLARON MODEL FOR AN INFINITE
ISOTROPIC MEDIUM (ACCORDING TO
PEKAR'®)

A polaron description of the electron state in a
polar medium vsually starts with the assumption
that the mean Coulomb field induced by the
surplus elecron locally polarizes the medium. The
electric field in turn influences the clectron. ' It is
essential that the electron interacts only with the
incriial part:

Fir} = Poir) = Pulr) (1)
where

L™= ]
dntra

ep=1

Py == [, }]
L 47

=

are dipole moment densities of static and high-
frequency polarizations, re and £. are static and
high-frequency diclectric permittivities, respect-
ively, and I} is electric induction. Hence,
Dir)

4=f

Flmes' = £g' is the effective dielectric permit-
tivity, The vector of electric induction causcd by

the dis1rlbu1¢d electron  charge with density,
el ¥(r)|? is equal to

n(r}-ejlﬂrn*—rl.d )

where ¥(r} is the wave function, which can be
obtained from the solution of the Schradinger
cquation:

Pir)= i2)

:

:—F A¥(ri+ ell(r)¥ (r)+ W¥ (=0 (4)

where W is the clectron energy. The potential

ITir}, created by the electron-induced polarization

VIl(r} = 4xP(r), can, using Eqns (2} and (3], be
found from the Poisson equation:

ATT(r) + 4=é e | ¥(1) | =0 (5

The system of non-linear differential equations
(4) and (5) fully determines the state of an electron
in an infinite polar medium. Pekar™ used ihe
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variational principle to find the ground state of
Eqns (4) and (5). Balabaev and Lakhno'™ inte-
grated them numerically and obiained solutions
correspanding 1o the excited polaron states difl-
feremt from the ground state. The approach thai
we have given here will be used further to describe
the polaron staics in a protein globule.

THE POLARON EQUATION FOR A PROTEIN
GLOBULE

Our mathematical model of polaron states in the
protein globule described by the model of dielec-
tric cavity 15 based on the following assumptions:
{1} the globule 15 neutral and has rero effective
surface net charge on the layer boundaries; (ii) the
electron states in the globule are thought of as the
acceptor's potential-bound polaron states; (iii)
cach layer is described by a separate isotropic
model of a continuous polar mediom, and the
electron wave function and the potential are
assumed o be smooth both within and on the
boundaries of each layer; and (iv) all the other
assumptions are identical with those adopted to
describe the polaron states in polar media, '™

For a spherically symmetrical case the above
assumptions yield the following equations for the
polaron in a protein globule:

A1 d L d
(gD

+ e[I1(r) + Plr) ¥ir) + W (r)=0 (6)
;";T"!'dﬂr'"””?*tm‘“ n

Riog<=r< fy, f-l.l...:ﬂu-ﬂ
where $(r) 15 the potentinl of the acceptor:
_Nalewr+a r< R
¥(r) {q{t:r r>= R (&)

for the two-laver model of the globule (83 = )
and

qler + ¢f F< iy
Bir)=1gler+eci  Ri<r<R (W)
qlear F= R/

for the three-laver model of the globule (£ = ).
The constant ¢y, ¢f and ¢f are defined from the
continuity of potential &(r) at the boundaries of
globular layers, ITir) 15 the potential of eleciron:
induced polarization, g is the electron effective
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mass, £ ' =g2' = £7! are the effective diclectric
constants of the ith layer and £ 5 the high-
frequency diglectric constant, which we assume 1o
be identical for all the layers.

The natural boundary conditions for Eqns. (6)
and (7) follow from the condition that the wave
function is bounded and continuous and that the
potential is continuous on the boundaries of
globular layers, so that

¥ (0) +$ W (D) =17 (0) = 0, ¥(ec)=T{c)=0

VIR —0) = ¥R +0), #' (R —0) = ¥"(R, + 0)
MR, - 0) = TI(R, + 0), &I1° (R, — O)

= & [T (R + 0)

(10)

Equation (&) is the Schrédinger equation for the
electron in the potential = (I1 + ), which is given
in a self-consistent way by Eqn (7). Therefore, the
non-linear system of differential squations (6) and
(7) with the boundary conditions (00} describes
bound polaron states in the protein globule. Its
solution determines the wave function of the elec-
tron state ¥ and the electron encrgy W, in
addition to the total energy of the [lf, which is
given by the function
Iel¥, 1) =:—1 E (V) dr-e l ¥+ &) dr
)

£i 1
+ B L (VI dr (11)

The lasi term of Eqgn. (113 is integrated owver
regions §l;, which corresnond to the layers of the
diclectric cavity model. We should siress that
Eqns (6) and {T) may be given by an independent
varation of the Tunction {11) with respect 1o the
wave Tunction ¥ir) and the potential IT{r) with
the wave function normalized by | #3(r) dr= 1.

SOLUTIONS OF POLARON EQUATIONS. THE
GROUND STATE

The system of Eqns (&) and (7) with the boundary
conditions {10) can be integrated numerically. The
details of the algorithm are described in the
Appendix. The case of polar media homogenity
[all £y = £y} suggesis an F-centre problem as salved
by Lakhno and Balabaev.' If one considers a
many-layer model of a protein globule, the sol-
ution of Eqns (6) and (7) is analegous (o the pre-
vious ong, It will be shown in the Appendix that
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the system has a discrete set of solutions which are
the self-consistent states of the electron and the
polarization of the globule and its surroundings,
Figure 4{a) shows a node-free solution (zero
moche) and Fig. 4(b) the solution with a node
which corresponds to the excited sell-consistent
state (first mode). In this section we consider only
the indings for the ground state.

For the two- and three-laver models of a dielec-

0.

-0.0

1kl

Figure 4. Solutons of the polaron equations for (1] the
twoelayer and [2) the thees-layer models of the protein
plobule: dal pera mode: (bl first mode. The wppar part
of the figue shows fenctions F1X (] 4xXT¥T dX = 1)
ardl ARG lower pai ahowa  functions  TILX) [ ee”
[ = O.CaTILX| .

158

Table 1. Polaron state characteristics in the protein
flabule

T laver model® Thege-layar model”

Physical

walwe® O-mode 1 Emenicie Cempde V-l
W -1.316 — 40 = 300 = 1,035
[ -0LEZD - 0258 = 0.887 - 0424
Wie - LEBE - 0283 = 0, B0 =0.413
hs - 0. EDB — 0238 -1.,243 - 0,778
[ 0280 - 0.083 0.255 -0, 169
[ 0.114 =0 1230 0,146 =0, 158
irhs az 8.3 2.3 i
{ries 10.0 19.8 7.6 12,2
ripe 6.8 16,0 57 11,0

*Tha valee of onorgies Wie. Wi, Wee, We and Fis, lry, fe
arg in oY the aversge radil (rig. (Fkes. {F) ore in A

*oym 20, 6= 80, pam 2, M= 1BA, pamy, Tl
Teymd, fedld, e, e M=TA MAy= 15 A,
ammy I= 1,

tric cavity, Table | lists the following values which
characterize the self-consistent ground state; clec-
tron (W5} and total (fs) energies; electron levels
{non-sclf-consistent) in 25 (Wis) and in 2P (W)
states and the corresponding total energics
(s, Izp), as well as the radii of the states
(Lriis. {rias, {rkae) Tor both the models.

I can be seen that for the more realistic (hree-
layer model the polaron radius in the ground state
is {r}is=2.3 A, which iz outside the approxi-
mation of the continuum model. Accordingly,
the q_uanﬂt;r & H"|5I1p = I Wyp = H"']_ql &= | 2 eV
(ew 1000 nm) Falls just inside the region of transi-
tions with charge transfers of metal-containing
IJ-:I"DIIEI:I'IEL Foo ] ]

THE EXCITED POLAROM STATES IN THE
FROTEIN GLOBULE

Table 1 lists both clectron (W) and total () ener-
gies and radii {r} in the excited self-consistent
state (25) and the non-self-consistent states 15 and
2P, which correspond to the potential polaron
well 25 [Fig. 4(b)]. Note frst that the radii of the
excited sell-consistent states of both two- and
three-layer models, which are 19-5 and 12.2 A,
respectively, greatly exceed the mean distances
between neighbouring atoms & of the medivm,
that is, the continuum approximation is reason-
ably accurate in this case. Our calculation has
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shown close electron energies in the self-
consistent, 25, and non-sell-congistent, 2P, states.
[n the three-Jayer case the 2P state has a higher
energy level than the 25 siate. Since the dipale
transfer to the 15 state is possible only from the
2P spane, the excited self-consistent 25 state can be
expected to have a longer lifetime in the three-
layer model.

Table 1 also yields an approximate estimate for
the luminescence band for the three layer model,
which is & Wips = 0,61 ¢V (ca 2000 nm), i.c. it
ligs in the far-infrared range. It might be
interesting to experiment with a band which being
the palaron ane could only be identified by a pre-
liminary estimation of the gualitative effects that
pH, fonic strength and temperature produce on
the propertics of the ‘polaron bands.'

THE DIELECTRIC CAVITY MODEL AND THE
THEORY OF ELECTRON TRANSFER

The above considerations indicate that the eleciro.
static model of the protein globule is suitable for
a consistent description of various processes per-
taining 1o phoioexcitation and of electron transfer
processes, For example, the probability « with
which the electron of the excited self-consistent 25
state of the protein molecule can tunnel from
donor to acceptor can be given by the following
expression: ™"

wm L3 rﬁp(- 5) (=] E.T)'?
wl

x expl - (E: - NY4ET] (12)

E = 1jRB=f '[ [ D — Dy, |* dr

LS

where L isthe matrix element of tunnelling, I¥ can
be determined from Eqm (3), J is the reaction
heat, & is the averaged frequency of polarization
oscillations in the molecule and £, is the total
reorganization energy of the medivm, Valwes of L
and Dy can only be determined if the acceplor
model is defned.

It follows in particular from Eqn (3) that the
probability of the tunnelling in the elecirosfatic
model considered is proportional (o the rate of the
chemical reaction and relates to the form of the
electron states by the tunnelling mairix element L
and inductions Dy and Dy In this case of
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Figure &. Distribution of electron density in the proten
globule for the three-layer model; plX) = X FNX; 1 s
the rern mode and 2 is the fivst mods.

extended electron states we can expect that the
consiant of the reaction rate should relate 1o the
pH of the solution and the spatial distribution of
charged amino acid groups, since the induciion
D:s[¥] of Egn (3) depends on the polaron wave
function for the most polarizable parts of the
protein molecule in the layer By < r < By of our

madel (Fig. 5).

DISCUSSION

The introduced representations of large-radius
extended states permit a completely new approach
to the problem of eleciron transfer to large dis-
tances. The above resulits for the model of a
dielectric cavity show that the radius of the first
excited state 15 comparable 1o the size of the
globule, which suggests that the whole globule is
involved in the process of forming such & state, IF
the acceplor is near the globule and the extended
sell-consistent state has a similar energy 1o one of
the acceptor’s electron states, then the represen-
tation of the eleciron as belonging o the globule
or the acceptor seperately makes no sense. If the
acceptor is far from the globule, then it is zignifi-
cant which is the value of the tunnelling matrix
element L of the electron transfer [Eqn (12)]. For
a large-radius state it may be several orders of
magnitude more than for a small-radius suate,
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Figure 6. Simple beanching of the configuration slectnon
trgngior coordenale g.

Every excited self-consistent state may be put in
accordance with configuration coordinates, For a
consistent description of electron (ransfer it is
necessary to take into account that an electron can
jump into intermediate sell-consistent states of
the acceplor and then o 1o the ground state,
Therefore, a complex picture of electron transfer
may be possible with branching of the chemical
reaction coordinate (see Fig. 6). This example is a
very simple case where the electron transfer from
state B to state C may be both radiative and non-
radiative, and in more general cases cascade
radiative and non-radiative processes are possible,

The existence of excited self-consistent siates
may lead to interesting effects on the EPR and
NME, lines, IR absorption, etc,, which can be
used 1o identifly these states, The discussion of
these problems is outside of the scope of this
paper, however,

APPENDIX
Finding the peolaron states in the globule

1. We shall seek spherically symmetric solutions
of differential Egns (6)—(7) with boundary condi-
tioms (100 for the globule models of Figs | and 2,
We start with passing over to new variables:

A gy =L (8 o
=g % 10 () e

M) = %l Z0X)
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MNormalization of the wave function yields
ue* |
W|= .
W= ar
where
I'= 5 YN dX
[

The relationship (A1) can then be rewritlen as

ﬁ!
Fal” X
e ™

- F i L0 3 TR | }'(f}, ’
*{f} ('} i e h F:ﬂj:. {A.I. _]'
_pe’ ZLX)
ey ==5r " Tig
We also  introduce the notation $(X):

S(r)={| W|lerb(X).

By substituting Egns (Al)into Eqns (6) and (7),
we obtain equations with spherically symmetrical
solutions:

d*¥(Xx) 2 dY(Xx)

axT X Tax
+ YIXNZ(X)+$(X)=1] =0
2 2 dZiX) A9
R el 2 -
X Ty Tax HHEY0=0
For the protein globule (Fig. 1)
N a N ( n:)
=== [1==] X<X
X o X C
'lil:..t']-. E i
N
¥, A3z X

where Xy is the scaled radius of the globule such
that B = (#%(2ue® )6l Xg. The new parameter N
is proportional 1o the charge g = Ze, so that

2# )I..ll W f{l
(l W\l e e
The piecewise-constant Munction = (A7) breaks on
the surface of the globule so that

X () = [r_:ql'él X< Xe

Xz Ar
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Analogously, for the three-layer model of Fig. 2:

(N o N E_.ﬂ*)
X oo X, £
') fa
—— - < X
) +xh(l i‘;} X B
Mx}zq‘h’ N £o
A8, Y (1-9 xcX<X
.rn*.rn,(' ) LA
E X = X,
EI:Ij'EI:I I":xﬂ.l
¥ (X} = 1§ €of €2 Xi, 2 X< X,
I Az Xy

The solution of Egns (A2) should satisly the
infinity conditions following from Eqn (10}, be
finite a1 zero and meet the corresponding internal
boundary conditions at points of breaks in the
piecewise-constant function x{A').

The boundary solutions for Eqns (A2) have the
form

2¥°(0) + N 2 ¥(0) = ¥(=)=0,
. Z0) = Z(w) =0 (AD)
For the internal boundary conditions:
¥iXp = 0)= ¥{Xgp 4+ 0),
¥ {Xg,—0) = ¥'{Xp, +0)
L Xg = D) m Z( X+ 0),
GE (Xn, = 0) = i1 Z'(Xp, + 0)

Here i=1 for the two-layer globule (B = K,
E3=6) and =1, 2 for the three-layer globule
(£ m &),

2. The solutions of the problem {A2) with
boundary conditions (A3} and internal boundary
conditions (A3') were found in the same way as
the solutions of the polaron problem in a
homogencous polar medium '* and of the Fcentre
problem, *

The procedure for inding solutions is obvious
for the polaron problem in a homogeneous polar
medium, 50 we shall take this case 1o describe the
algorithm, Then, az we have alrendy mentioned,
we shall pass over 1o the problems which are our
immediate interest.

2.1. The equations of the polaron in a
homogeneous medium can be regarded as the
particular case of Egns (A2) where & =g and
ANo=00 The mathematical formulation reduces Lo

(A3’)
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finding the solwions of the boundary-walued
problem:

2

X+ ‘—*, YK+ E{Xj]"f.]f}- Y(X)=10
(Ad)
E'{x}+%-2'{..’f}+ Y2 X) -

Y0y = Z'(0)=0; ¥lee)= ()=

It was shown'® that this problem has a number
of solutions in which Z.(X) (n=0,1,2,...)
monotomically tends to rero as X —+ 0, and Fa (A7)
crosses the axis A » umes, afier which it tends o
Fero as X =+ oo,

Mow we change variables so that

F=XY, #n=XZ
and Eqns {A4) assume the form

e flnfX-1)=0
n" 4 X=0

=gl =0 [{=)=5'(=)=0 (A6

2.2, The solutions of Eqns (A%), which only
satisfy the left-hand boundary condition of
Eqns (A6) in the neighbourhood of the point
X =10, may be represented as power series:

Fixy=m X+ DX+ @ X o
XY= X+ b X+ B XY e

If we substitute these series inte Eqns (AS5), we
can see that all coefficients @ and b are expressed
in terms of aymag and by = b Confining
ourselves o the first few terms of the series, we
can, al & point Xy which is not distant from
X=0, find a desirably accurate walues of
P X, b) and 5{Xe; @, by and their derivatives
corresponding to definite values of parameters @
and b.

2.3. For the system of differential equations
(AS5) we define the Cauchy problem in the interval
[Xs, Xi]. To this end, for X'= Xy (Xo is small),
we  determine  F{AXy e, b)) and 9N a, ),
' (Xa; @, &) at preseribed values of o and b, Then
the solution is found numerically on a computer
by the standard Runge—Kuita method.

Mote that the second equation of Egns (AS)
yields a convex function g A}, so that g"(X) <0
for all X 2 0, This property of g X) is central in
finding the solution of a boundary-value problem.
If we succeed in choosing the valuss of o and &b
such that x(X) tends to a constant a8 X = w0,

(AS)
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q nlX}

Figure 7. Functions $iX) for variows indiial data given by
o amd b: (1] a=1.2, B=2.0; (2) a=1.1, b=2.0:
Ala= 102 b= 1.04; (4] a=1.0, b= 2.0,

then LX) will tend to zero. This would mean a
solutton of the boundary-value problem of
Egns (A5} and {A6) 5 found,

2.4, We now choose the values of parameters o
and & and solve within an interval [Xy, Xx] the
emerging Cauchy problems. Figure 7 shows some
of such solutions. Take an Xx which corresponds
1o the maximum of one of them, such that g = a*
and b=5b" (" and b* are definite numbers).
Define a funciion

F‘ﬂlb:l - 'u'li-"rllnﬂr'b:l

Let us now (ake the Cauchy problem for a new
interval [ Xy, Xxl, which, when solved lor some a
and &, will yield the wvalwes of the function
Fla, ). The equation

Fla,by=10 (AT}

is an implicit dependence between o and b. Here,
the choice of Xy deétermines one of the poinis of
this dependence which is Fla®, b*) =0,

The dependence (A7) in the prescribed intervals
of @ and & may be found with the CURVE
program complex, ** Figure 8 shows a curve which
wits abtained with this program.

The solutions of the Cauchy problem for o and
b aleng the curve cam be seen in Fig. 9. Amn
analysis of the curves §(X) suggests the exisience
of a serics of solutions of the boundary-value
problem in Egqns (A%) and (AB), They may be
arranged as follows: §(X), with =002, .
crosses the axis X, o times, after which it
exponentially tends to zero; and w.{X) grows
monatonically 1o s extreme value qs(e].

2.5. We define a system of two functions of
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Figure B. Dependonce betwesn 5 and b Tollavwing from
Egn (AT] &1 X'= 10,

three variables:
Fila, b, Xx)m ' (X a, b)
Faila, b, Xg)m n'( X a,b)

This definition means that for the values of F,
and F; 1o be determined, the Cauchy problem
should be solved in the interval [Xg, Ak] with the
initial  values corresponding to  those of
parameters & and &, The valwes of ' and 5' in
the end of the integration path give the values of
the functions. The system of equations

Flhhb!-rﬁ'}:ﬂ
Fila, b, Xc)=0

locates a curve in the space of variables a, b and
Ar. We determined pieces of several branches of
the curve., To this end, we chose initial
approximations tw  each branch from  the
calculations above, then ran the program CURVE
to find points of the curve (A9) which correspond
to the values of the variables g, b and Xi in the
prescribed range.

As Xy - oo, the conditions (A9) are identical
with the right-hand boundary conditions [AG).
Actually, in polaron problem we only had to go
up to Xe = 10 for the zero mode (r=0), Xy =15
for the frst mode (#= 1) and Xy =20 for the
second mode (7 = 2) 10 obtain the solutions of the
boundary-valued problem in Eqns (A3) and [AS)
with a given accuracy.

Figure 10 shows two of the solutions obtained
by this procedure,

3. The F-centre problem differs from the
polaron  problem for a homogensous  polar
medium by additional terms WYX in the first of
Eqns (A1), where N is the problem's parameter.

(A8}

(A9)
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Figurs 9. Solutions of the Cauchy problem for varlous @ and & on the curve [AS) of Fig. B:(ap 2 =0.733, b= 1.0884;
bl o= 1003, b= 1.821; b o= 1.026, b= 1.842; (d] o= 0623, b 1,662 (0] o= 0.000, b= 2.074; (f} 2= 1.338,

b= 2.727.

We sought solutions for various & on the curves
which pass through the polaron solutlons, The
system of equations is
FI{N-ﬂ-b]-f'{x#: Hl'ﬁ'!'b}-u {.A.Iﬂ:'
Fa(N,a,b)m g’ (Xg; N, a,b)=0
The curve (A10) started from the known values at
N=0 for the polaron states. The actual
dependences were found by the CURVE program.
To refine the solution for a given N we introduced
new functions:

Fola. b, Xe)m (X N, a, )
Fala, b, Xp)m g (X N, a, b)

and proceeded as for the polaron case for system
(A).

4, The above polaron and F-centre problems
help o And spherically symmetrically polaron
states in various models of the protein globule.
Let us consider the two-layer model of Fig. 1, for
which the case of many-laver models differs
merely in technical details,

The initial model [Eqns (6) and (7)) takes as
physical parameters the values [e, &2, &=, R, Z].
The boundary-valued problem in Eqns (A2) and
(A3} containg Xg and A, instead of B and 2,

ar z
EJ%) £%)
Q 5 i5 * 0 15 &
1 - vx 1
=2t ~2 - & wix)
fal it

Fligurs 10. Scluticns of the boundary-value problem in
Egns (AB] wmnd JABL ) s=1.021. &=19348;
bl o= 1.081, b= 2320,

whizh are interrelated as

.
xﬁ: =R E_,u_ﬂ} r i
Since the value of M'=[; Y{X)X* dX is not
known beforchand, the valwes of Xp and N,
which appear in the equations and correspond 1o
a presct globule radius R and charge £, are not
known. The only parameier known is their
product:

N=Z-2.r (A1)
£p

1
RZ
MNXy = iﬁ-  — = ¢onstant
i T

(A12)
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The right-hand side of Egqn{Al2) contains
universal constants and model parameters only.
The dependence (Al2) suggests the following
algorithm for finding the solutions, as follows,

Iar step. We change variables as = FA and
n=ZX. Then, representing {(X) and 5(.X) as
power serigs:

FLX )= 0 X @ X+ e
gl XY= by X+ b XY L

and substituting them in (A2} we find a 1wo-
parameter family of solutions of differential
equations (A2) in the neighbourhood of the point
X'=0 which satisfy the lefi-hand boundary
condition (A3). Parameters @ and b are equal 10
F(0) = Yo and Z(0) = Z,, respectively.

Zrief srep, We start from the known solutions
for the F.centre. Let Ta, Z5 and N be the values
of medivm parameters which determine a mode
of the F-centre. Then, from Eqn(Al2),
X = constant/ N*. The system of equations is
defined as

FilYe, Zo.61) m [ (Xi; Yo, Zo, 01) =0
FalYo, 2o, &1) m ' (Xii Yo, Zo, 1) =10

Put ey=80 and N=N® Then the point
(Yo, Zo,01) = (¥3, Z3, £2) will belong to the curve
(A13), because of the initial values of parameters.
We may make use of the CURVE program to
locate the branch of the curve which passes
through this point. Therefore, we can go from
€y=80 to £ =20 which was prescribed to the
two-laver model.
Ired step. The system of equations is

Gl Yo, Zo. Nim [ Xk Yo, Zo. W1 =0

G: (Yo, Zo, N) = 9" (Xi; Yo, Zo, N} = 0
Starting from the previous solution at g = 80,
£y = 20 and appropriate parameier values of ¥y,
Zo and N, we locate the branch of the curve (A14)

by I]‘l-E CURVE program. Then we calculate
I'= [y ¥'X?dX, at each of the found points of

(Al3)

(Ad4)
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We can move along the curve until we reach the
parameters B = 15 A and Z=1 [from Egn (A123)
these values will emerge one at a time]. In this
way, we can find a solution to this case of the
boundary-value problem.

dtk step. If desired, the solution may be refined:
Ag should become the parameter and should
maove towards larger wvalues. Examples of
solutions for the globule's polaron states are
shown in Fig. 4,

%. The spectral electron®s characteristics in the
potential field of self-consistent polaron states
were found by solving the lincar Schrédinger
equation with potential U(X)= Z,(X) + $#(X),
where Z,(X) is the mh solution of ihe boundary-
value problem in Egns (A2) and (A3), However,
there are some limitations caused by the function
Zal Xy defined for a discrete sequence of non-
uniformly spaced points only. It is common
practice to use interpolation equations here,
However, we proceeded in a different way and
appended the linear Schridinger equation:

x" —&1& x+ x{%ﬁ 'f*) -hx=0 (Al

X
by the following equations for polaron states:
i X+d)=r=0 (A16)

"+ x (XWX =0

and combined the three into a single system of
differential equations, The variable x is absent in
Eqns (A16), and therefore (XY of Egn {(Al35)
emerges every time in the same form, which also
corresponds 1o the polaron mode at poinis
conforming to Egqn {Al%) and is independent of
the values and initial data for x{X). At given [
(orbital moment) and 7 (number of zeroes), & was
found by the half-division procedure, The resulis
are given in Table 1.
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