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The aim of the work is to study the structure of a one-dimensional (1D) bipolaron, taking into 
account three types of correlation effects: such as interelectronic correlations caused by the direct 
dependence of the wave function on the distance between electrons as well as the one-center and two-
center correlations. Gaussian orbitals with exponentially-correlated multipliers were used for variational 
calculations. It is shown that in the domain of existence of an 1D optical bipolaron – unlike in a 3D 
system – a two-center bipolaron is formed. The one-center bipolaron configuration becomes energetically 
favorable as compared to the two-center one for V C ≤ 1.2 (where V C is interelectronic repulsion 
parameter). This domain corresponds to an acoustical or acousto-optical bipolaron in the strong-coupling 
limit.

© 2019 Elsevier B.V. All rights reserved.
1. Introduction

Self-localized states (polarons and bipolarons) are investigated 
in a lot of papers which are overviewed in numerous reviews and 
monographs [1–4]. Passing on from three-dimensional (3D) sys-
tems to one-dimensional (1D) ones involves qualitative changes 
in the energy spectrum of polaron and bipolaron states. Exam-
ples of one-dimensional and quasi-one-dimensional systems that 
allow an electron-phonon interaction to be continually considered 
can be organic molecules containing consecutively arranged iden-
tical chromoform groups, different polymers consisting of identi-
cal molecules or atoms, the number of which can reach several 
million. Of particular interest is the process of charge transfer in 
systems of wildlife. One of the objects with conductivity prop-
erties close to one-dimensional systems can be biological macro-
molecules, such as DNA. The most likely carrier of charge in DNA 
are polarons, which can be considered within the framework of 
various models [5–9].

The development of nanotechnology has led to the creation of 
new objects of reduced dimensionality, such as quantum wires, 
quantum wells [10], quantum dots [11–13], and even linearly 
ordered quantum dots [14,15], which are an example of low-
dimensional systems with polaron conductivity [16].
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Experimental and theoretical methods for studying polaron ef-
fects used in 3D systems [17] are successfully applied in systems 
of lower dimensionality [18]. Leskinen et al. [18] find polaronic 
behavior in one-dimensional (1D) optical lattice qualitatively sim-
ilar to that in the experiment by Schirotzek et al. [17], where ra-
diofrequency spectroscopy was used to observe polarons in three-
dimensional (3D) systems. Considerable attention is currently be-
ing paid to studying the mechanisms of polaron effects in 1D or-
ganic polymers [19,20] and wildlife objects [21–23].

The study of such molecular systems is relevant in connection 
with their use in solar energy converters [24], flexible TV displays, 
logical circuits [25], organic bioelectronics [26–28], using DNA in 
molecular lithography for the manufacture of monolithic micro-
circuits [29], as well as the prospects for their use in molecular 
electronics devices [16,30–32]

A polaron is a complex of electrons and the lattice distortions 
that accompany them. The lattice distortions can be created by 
optical and acoustic phonons. In 1D systems the strong coupling 
functionals of the optical and acoustic polaron are identical, and 
the Euler equation corresponding to the polaron functional has 
an exact solution [33,34]. In this paper we consider polarons in 
1D-systems without specifying the physical nature of the electron-
phonon interaction. The basic system is a continuum Holstein 1D 
polaron [34] and the corresponding strong-coupling functional. The 
influence of correlation effects on the coupling energy of a 1D 
bipolaron was considered earlier by Emin et al. in Ref. [35]. In 
the absence of correlation effects the bipolaron wave function is 
a product of polaron wave functions. The two types of correlation 
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effects have already been considered in Ref. [35]: in-out and left-
right correlations. The in-out correlations correspond to the one-
center bipolaron configuration while the left-right correlations – to 
the two-center one. These correlation effects were considered in-
dependently, both of them together were not taken into account. In 
our paper these correlations are called one-center correlations and 
two-center ones, respectively. In three-dimensional systems stabi-
lization of the bipolaron states mainly depends on the correlation 
effects associated with the direct dependence of the system’s wave 
function on the interelectronic distance [4,36]. Correlation effects 
of this type were not considered in Ref. [35]. In Ref. [9] consid-
eration was given to a one-center model of 1D bipolaron with 
regard for correlation effects of this type. In what follows such 
correlations will be called interelectronic correlations. In Ref. [22]
consideration was given to the possibility of formation of bipolaron 
states in DNA in adiabatic approximation on the basis of Holstein-
Habbard discrete mode. DNA can provide an example of a one-
dimensional system possessing the properties of dielectrics [37,
38], semiconductors [39–41], metals [42,43], and even supercon-
ductors [44,45]. The papers devoted to the study of various aspects 
of charge transfer in DNA are reviewed in Refs. [46–48]. Presently 
the bipolaron mechanism of superconductivity leads among the 
mechanisms for explaining the high-temperature superconductiv-
ity [4,49,50]. The superconducting state of DNA was observed at 
low temperatures T ≈ 1 K for chaotic nucleotide sequences (λ -
DNA) [44]. The low temperature of the superconducting transition 
can be caused by inhomogeneity of nucleotide composition. There-
fore it is important to study the possibility of the formation of 
bipolarons in homogeneous nucleotide sequences where bipolaron 
states are more stable.

The aim of this paper is to calculate the coupling energy of 
a one-dimensional bipolaron with regard for the three above-
mentioned correlation effects for various distances between the 
centers of polarization wells. The dependencies obtained will en-
able us to make a conclusion about the configuration of a 1D 
bipolaron depending on the parameters characterizing the value 
of the electron-phonon interaction and the value of Coulomb re-
pulsion between the electrons in the system under consideration.

2. Effective functional of the ground state of a one-dimensional 
polaron

In continuum approximation the functional of a one-dimension-
al polaron can be written as in Refs. [35,9]:

E1 = t

∫ ∣∣∣∣∂φ(x)

∂x

∣∣∣∣2

dx − Eb

∫
dx|φ(x)|4, (1)

where t and Eb are parameters of the theory.
Functionals (1) can be obtained both by the adiabatic approx-

imation method [35,9], and within the framework of the quan-
tum approach describing the electron-phonon interaction by the 
Frohlich Hamiltonian [51].

By analogy with a three-dimensional polaron, the parameter 
t = h̄2/2m∗ , where m∗ is the effective mass of the band elec-
tron, Eb is the coefficient responsible for the electron-phonon cou-
pling in a one-dimensional molecular chain. In the case of optical 
phonons, by analogy with a three-dimensional polaron, we can as-
sume: Eb = (1/ε∞ − 1/ε0)/2. In a one-dimensional system in the 
strong-coupling limit the functional of an acoustical polaron has 
the same form as the functional of an optical polaron, therefore 
the integrated contribution of phonons into the energy of electron 
states can greatly exceed the contribution of optical phonons.

The energy of the ground state of a self-localized system can be 
found by minimization of functional (1). As shown by Rashba [33]
and Holstein [34], Euler equation corresponding to this functional 
has an exact solution given by the expressions:
E1 = − 1

12

E2
b

t
, φ1(x) = √

Eb/4t · sech

(
Eb

2t
x

)
(2)

where E1 and φ(x) are the energy and the wave function (WF) of 
the ground self-consistent state of a one-dimensional polaron, x is 
the electron coordinate.

3. Effective functional of the ground state of a one-dimensional 
bipolaron

The influence of correlation effects on the energy of a one-
dimensional bipolaron was studied in Ref. [35] where considera-
tion was given to one-center and two-center correlation effects. 
The one-center configuration of a one-dimensional bipolaron was 
investigated in Ref. [9] with regard for correlation effects related 
to the direct dependence of the bipolaron WF on the interelec-
tronic distance. Here we will model bipolaron states with regard 
for correlation effects, such as the one-center and two-center cor-
relations as well as the interelectronic correlations caused by the 
direct dependence of the WF on the distance between electrons. 
In the adiabatic approximation the effective functional of a one-
dimensional bipolaron has the form [35]:

J2 = −t

∫ ∫
�∗

12�12�12 dx1dx2

−4Eb

∫ ∫ ∫
|�∗

12|2|�∗
23|2 dx1dx2dx3

+V C

∫
|�11|2 dx1 (3)

where �12 ≡ �12(x1, x2) = �21(x2, x1) is the symmetrized and 
normalized WF of the two-electron system; �11 ≡ �12(x1, x1); 
�12 = ∂2

∂x2
1

+ ∂2

∂x2
2

; V C determines the value of the Coulomb repul-

sion between the electrons.
The first term in functional (3) corresponds to the kinetic en-

ergy, the second one – to the total contribution of the phonon field 
and the electron-phonon interaction, the third term – to the con-
tribution of the Coulomb repulsion.

Let the WF of a system consisting of two polarons whose polar-
ization well centers reside at points a and b has the form:

�12 = 1√
N12

(�a1�b2 + �a2�b1) f (x12), (4)

where N12 is the normalization integral:

N12 =
∫ ∫

dx1dx2|(�a1�b2 + �a2�b1) f (x12)|2, (5)

�a1(xa1), �b2(xb2) are the wave function of the first and the sec-
ond polaron, centered at points a and b, respectively; xa1, xb2 are 
coordinates of the first and the second electron reckoned from the 
centers a and b, respectively; f (x12) is the variational function 
depending on the distance between the electrons x12 = x1 − x2, 
located at the points with coordinates x1 and x1.

Let the origin be in the middle between the centers of polariza-
tion wells located at points a and b. Let us introduce the following 
notation:

�±
1,2 = �±

1,2(x1,2 ± R/2), (6)

where R is the distance between the polarons.
With regard for (6) WF (4) takes the form:

�12 = 1√
N12

(�+
1 �−

2 + �+
2 �−

1 ) f (x12). (7)

WF (7) corresponds to the singlet state of a bipolaron.
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4. Derivation of analytical expressions of the bipolaron 
functional

In order to investigate the spatial configuration of a bipolaron 
let us choose the approximation of WF (7) in the form:

�12 = 1√
N12

· (1 + P12)�12, (8)

�12 = exp
[
−a2(x1 + R/2)2 − c2(x2 − R/2)2

]
· exp(−b x1x2),

(9)

where P12 is the operator of permutations of electron coordinates; 
a, b, c are variational parameters. The normalization integral N12

is determined by expressions (10)-(12):

N12 = 2 · (N + S), (10)

N =
∫ ∫

|�12|2 dx1dx2 =
∫ ∫

|�21|2 dx1dx2, (11)

S =
∫ ∫

�∗
12�21 dx1dx2, (12)

where �21 = P12�12.
Having calculated integrals determined by expressions (11) and 

(12) we get:

N = π√
4a2c2 − b2

· C2(R) · exp

(
2a2c2 · a2 + c2 + b

4a2c2 − b2
· R2

)
, (13)

S = π√
(c2 + a2)2 − b2

· C2(R) · exp

(
1

2
· (c2 − a2)2

c2 + a2 + b
· R2

)
, (14)

where C(R) = exp
(
− a2+c2

4 R2
)

.

All the integrals involved in bipolaron functional (3) can be 
calculated exactly with the use of WF (8). Analytical expressions 
that we have obtained are rather cumbersome and omitted here. 
In the limit cases corresponding to the one-center (R = 0, a 	= c) 
and two-center (R = Rm 	= 0, a = c) configurations, for b = 0, the 
expressions obtained coincide with relevant expressions derived 
in Ref. [35]. Having calculated all the integrals in functional (3)
with the use of probe function (8), we can find the energy of a 
one-dimensional bipolaron E2 for each value of R by varying the 
three-parameter function corresponding to functional (3) over pa-
rameters a, b and c:

E2 = min
{a,b,c}

J2 = T + E ph + EC , (15)

where T is the average value of the kinetic energy; E ph is the en-
ergy equal to the integrated contribution of the phonon field and 
the energy of electron interaction via the phonon field, EC is the 
energy of Coulomb repulsion between the electrons; the averaged 
potential energy of the two-electron system in the phonon field is 
determined by the expression: E pot = E ph + EC .

5. Results of numerical calculations

For computational convenience we will choose dimensionless 
units assuming that t = 1, Eb = 1. Then the unit of energy, accord-
ing to (2), is E2

b/t , the unit of length is t/Eb . The exact polaron 
energy according to (2) in the dimensionless units is E1 = −1/12.

To illustrate how we calculated the energy of a system con-
sisting of two polarons placed at a distance of R from each other 
we present in Fig. 1 the dependencies of the bipolaron energy on 
the distance R for different parameters V C in the domain V C ≤ 2. 
The probe function was chosen in the form (8). We believed b = 0
Fig. 1. Dependence of the bipolaron energy on the distance between the centers of 
polarization wells for different V C . Variational function is chosen in the form (8) for 
b = 0 in expression (9). The parameters are Eb = 1, t = 1.

in expression (9), i.e. both one-center and two-center correlations 
were taken into account together, but the interelectronic correla-
tions due to the correlation coefficient (16)

f12 = exp(−b x1x2) (16)

were not considered. In the limit R → ∞ all the dependencies 
given in Fig. 1 tend to doubled polaron energy calculated in the 
same approximation, i.e. with the use of the polaron probe func-
tion chosen in the form:

�1G(x) = C exp(−α2x2), C =
(

2α2

π

)1/4

, (17)

where C is the normalization constant, α is a variational parame-
ter.

For R = 0, V C = 0 the bipolaron energy calculated with the use 
of the exact function should tend to 8E1, where E1 = −1/12. In 
Fig. 1, the energy dependence corresponding to V C = 0 for R = 0
takes an intermediate value lying in the range of 8E1 < E2(R =
0) < 8E1G . As the versatility of the probe function grows, E2(R =
0) → 8E1. The choice of the bipolaron probe function in the form 
of a product of exact polaron functions (2) leads to fulfillment of 
the exact equality E2(R = 0) = 8E1 for V C = 0.

The curves presented in Fig. 2 illustrate how the calculated 
value of the bipolaron energy changes as the versatility of the 
probe WF (8) varies for V C = 2. For V C > 2 a non-correlated bipo-
laron decays into 2 polarons. For V C < 2 the potential well formed 
by the phonon system interacting with an electron is so deep that 
a non-correlated bipolaron may form. Correlation effects stabilize 
the bipolaron state and expand the domain of existence of a bipo-
laron with respect to parameter V C .

Curve (1) in Fig. 2 is obtained with regard for only two-center 
correlations for a = c, b = 0 in (9). The only energy minimum cor-
responds to the two-center bipolaron configuration. In two limit 
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Fig. 2. Dependence of the bipolaron energy in E2
b/t units for V C = 2 on the distance 

between the polarons for different WF (8) of the polarons: (1) a = c, b = 0; (2) 
a 	= c, b = 0; (3) a = c, b 	= 0; (4) a 	= c, b 	= 0. The distance R is presented in 
units t/Eb . Horizontal lines correspond to exact value of the doubled polaron energy 
2E1 = −1/6 and polaron energy 2E1G calculated with the use of the one-parameter 
Gaussian function (17).

cases corresponding to R = 0 and R → ∞ the bipolaron energy ex-
actly coincides with the doubled polaron energy obtained by vari-
ational method with the use of the one-parameter Gaussian func-
tion (17). In Fig. 2, the exact doubled polaron energy is indicated 
by horizontal line −1/2π . In 3D systems the case of V C /Eb = 2
corresponds to extremely strong electron-phonon coupling with 
longitudinal optical phonons when ε∞/ε0 → 0 (where ε∞ and ε0
are the high-frequency and static dielectric permittivities, respec-
tively). In this case the non-correlated optical bipolaron decays into 
two polarons.

Curve (2) corresponds to consideration of both one-center and 
two-center correlations: a 	= c, b = 0. As we can see, in the vicin-
ity of R = 0, there is a wide though a shallow energy minimum. 
As R grows, one-center correlations recede into the background as 
compared to two-center ones, curves (2) and (1) merge into one 
line which coincides with the dependence presented by curve (1), 
when a = c. The bipolaron stabilizes oneself in the two-center con-
figuration. Curve (3) corresponds to a = c, b 	= 0, when account is 
taken of both two-center correlations and correlations associated 
with the direct dependence of the system’s WF on the interelec-
tronic distance. The energy minimum corresponding to the two-
center configuration becomes much deeper, while the one-center 
configuration is unstable. Curve (4) corresponds to consideration 
of three types of correlation effects. In the vicinity of R = 0 there 
is a minimum separated by the energy barrier from another mini-
mum which corresponds to the two-center bipolaron. As R grows, 
curves (3) and (4) merge into one line which indicates the decrease 
of the role of one-center correlations with a rise of R .

Fig. 3 illustrates the energy dependencies of a two-polaron sys-
tem on the distance between the polarons for different values of 
the Coulomb repulsion parameter V C in the domain of existence 
of an optical bipolaron. For �12 in (8) we have chosen the three-
Fig. 3. Energy dependencies of a two-polaron system on the distance between the 
polarons for different values of the interelectronic repulsion parameter V C .

parameter function (9). The dependencies presented in Fig. 3 corre-
spond to a bound state of a two-center bipolaron with the energy 
minimum at Rm 	= 0. Horizontal lines in Fig. 3 correspond to the 
polaron doubled energy 2E1G = −1/2π calculated with the use of 
Gaussian approximation and the exact value of a one-dimensional 
polaron 2E1 = −1/6. Thus, in the case of V C ≥ 2, interelectronic 
correlations due to the direct dependence of the bipolaron WF 
(8) on the distance between the electrons stabilize the two-center 
configuration.

The dependence E2 on the parameter V c is shown in Fig. 4. 
The same figure shows the dependence of the equilibrium distance 
between polarons Rm in the energy minimum on the parameter 
V c .

Fig. 5 shows different contributions into the bipolaron energy as 
a function of a distance between the centers of polarization wells 
of two polarons. The virial theorem:

E2 = −T , E2 = E pot/2, E pot = E ph + V C , (18)

where E pot is the average potential energy, holds for three values 
of interpolaronic distances: R = 0, R = Rm and R → ∞, which cor-
respond to energy minima of a two-polaron system. When V C = 2
for R = 0 and R → ∞ the bipolaron energy tends to doubled po-
laron energy calculated in the same approximation.

Virial theorem (18) is also valid for the maximum on the de-
pendence E2(R) shown in Fig. 5. The occurrence of two energy 
minima on the E2(R) curve raises the question of the possibility of 
coexistence of two types of bipolarons (one-center and two-center 
ones) in one-dimensional systems. However, it seems likely that 
investigation of the energy barrier value requires more precise cal-
culations which is beyond the scope of this paper.

Fig. 6 demonstrates the dependencies of variational parameters 
a, b and c on the distance R between the polarons for V C = 2. As 
can be seen, as R grows the role of one-center correlations caused 
by different values of the parameters a and c decreases. On the 
graph we can see that as the distance between the polarons in-
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Fig. 4. Dependence of the bipolaron energy E2 and the interpolaron distance corre-
sponding to the energy minimum Rm on the Coulomb repulsion parameter V C .

Fig. 5. Dependence of different contributions into the bipolaron energy in E2
b/t units 

for V C = 2 on the interpolaronic distance R for the most flexible polaron WF with 
a 	= c, b 	= 0 in eq. (8). E2 is the energy of the ground state of a singlet bipolaron, T
is the kinetic energy, E pot = E ph + EC is the potential energy of a bipolaron.

creases, the dependencies of a and c on merge into one line. For 
a configuration corresponding to a two-center bipolaron, we can 
assume with good accuracy that a = c.
Fig. 6. Dependence of variational parameters a, b, c on the distance between the 
polarons for V C = 2.

Fig. 7. Dependence of the one-electron probability density of the state (19), corre-
sponding to the bipolaron WF (8) for the parameters which minimize the bipolaron 
functional (3).

Fig. 7 presents the dependencies of the one-electron probability 
density ρ1 on the distance between the polarons:

ρ1(x1, R) =
∫

ρ12(x1, x2, R)dx2 (19)

where ρ12(x1, x2, R) = �12(x1, x2)
2, WF �12 is determined by 

equation (8).
The domain of existence of a bipolaron with respect to param-

eter V C can be determined with reference to the doubled polaron 
energy calculated in the same approximation or with reference to 
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the exact value of the doubled polaron energy given by expression 
(2):

2E1G − E2 ≥ 0, (V C ≤ V ∗
C ), (20)

2E1 − E2 ≥ 0, (V C ≤ V ∗∗
C ), (21)

where E1G = −1/4π , E1 = −1/12 in our units (Eb = 1, t = 1), the 
polaron energy E1G is calculated with the use of a one-parameter 
Gaussian function (17). As follows from Fig. 4 V ∗∗

C ≈ 2.98, V ∗
C ≈

3.30.
The one-center bipolaron configuration becomes energetically 

advantageous as compared to the two-center one for the values

V C < V C O ≈ 1.2. (22)

As it follows from Fig. 7, the one-electron probability density of 
the state assumes the shape of a curve with two maxima near the 
boundary of the domain of existence of a bipolaron with respect 
to the parameter V C .

As it follows from expression (3) in the limit V C → 0 the bipo-
laron energy 8 times exceeds the polaron energy. The value of 
the bipolaron energy E2 calculated with the use of the three-
parameter WF (9) in the limit V C → 0 is equal to:

8E1 = −2

3
< E2 ≈ −0.655569 < 8E1G = − 2

π
. (23)

If in expression (9) we assume a = c, b = 0, we obtain E2 =
−2/π = 8E1G for R = 0, V C = 0. Having chosen functions (2) for 
one-electron functions in expression (4) we get E2 = −2/3 = 8E1
for R = 0, V C = 0. In this case correlation effects are lacking and 
the bipolaron WF can be presented as a product of polaron func-
tions which are the exact solution of polaron equation (1).

6. Results and discussion

The calculated values of the energy and the domain of exis-
tence of a one-dimensional bipolaron should be compared with 
the results obtained by other authors. The influence of one-center 
and two-center correlations on the coupling energy of a one-
dimensional bipolaron was investigated in Ref. [35] where the one-
center correlations were considered for the one-center bipolaron 
and the two-center ones – for the two-center model. Electron cor-
relations related to consideration of the direct dependence of the 
system’s WF in the phonon field were not taken into account. We 
have obtained energy dependencies of a two-polaron system on 
the distance between the centers of polarization wells where the 
three types of correlation effects are taken into account together. 
The analytical expressions of the bipolaron functional for the Gaus-
sian approximation and numerical values of the bipolaron ground 
state energy obtained in Ref. [35] for V C = 0, 1, 2 are reproduced 
from our expressions and results of variational calculations with 
the use of WF (8) for the limit cases of one-center (for a 	= c, b = 0, 
R = 0) and two-center (for a = c, b = 0, R = Rm 	= 0) bipolaron 
configurations.

The two-center bipolaron was studied in Ref. [35] using two 
types of one-electron functions in WF (8): exact polaron functions 
(2) (secant approximation) and Gaussian functions (17) (Gaussian 
approximation), correlation factor f12 was not taken into account. 
For Vc = 2, the bipolaron energy E(sec)

2 = −0.2021 and E(G)
2 =

−0.1968 for the secant and Gaussian approximations respectively. 
Curve (1) in Fig. 2 reproduces the energy of a two-center bipolaron 
obtained in Ref. [35] for Gaussian functions, curve (4) is the energy, 
calculated by us taking into account three types of correlation ef-
fects. In this case E(4)

2 = −0.2230. The bipolaron binding energy 
determined in relation to the exact value of the doubled polaron 
energy 2E1 − E2 increased by 86.7% and 56% compared with the 
Gaussian and secant approximations used in Ref. [35] respectively.

In Ref. [9] the one-center bipolaron configuration was consid-
ered. Account was taken of correlation effects related to the direct 
dependence of the WF on the interelectronic distance. The probe 
function was chosen in the form:

�12 = A
(

1 + β(x1 − x2)
2
)

exp(−a2x2
1)exp(−a2x2

2) (24)

The bipolaron energy obtained in Ref. [9] using the WF (24) for 
V C = 2 was E2 = −0.2093. The critical value of the Coulomb re-
pulsion parameter V C , above which there is not a stable bipolaron 
state for WF (24) lies in the range:

3.18 ≤ Ṽ C ≤ 4.07 (25)

Higher value of binding energy obtained with the use of func-
tion (8), as compared to those obtained with the use of WF (24), 
are related to the fact that two-center correlations are not taken 
into account in WF (24). As it is shown in Ref. [9], in the re-
gion near the boundary of the bound state with respect to V C , 
in a 1D system, the curve for one-electron probability density of 
the state, determined by WF (24), has the same shape as that for 
the density of the two-center configuration. In three-dimensional 
systems the situation is the opposite: in an isotropic crystal, the 
one-center bipolaron configuration corresponds to a spherically 
symmetric probability density of the state, while the minimum 
corresponding to axially symmetric two-center bipolaron config-
uration disappears when all three types of correlation effects are 
taken into account together [52].

The dependencies of the one-electron probability density of a 
bipolaron, shown in Fig. 7, agree well with the conclusions ob-
tained in Ref. [22] where a possibility for bipolaron states to be 
formed in nucleotide chains was considered on the basis of the 
discrete Holstein-Habbard model with a discrete Hamiltonian. As 
is shown in Ref. [22], in one-dimensional systems both two-center 
and one-center bipolarons can be formed. As the binding energy 
decreases, the energy of holes localized at two neighboring sites 
differs slightly from that of holes localized at two sites spaced far 
apart. We can say that in this case the bipolaron state has low sta-
bility with respect to decay into two individual polaron states. In 
Fig. 7 this state is represented by the curve of the state density for 
V C = 3.5.

The use of WF (8) allows one to obtain not only the energy of 
a two-center bipolaron E2(Rm), but also to study the interaction 
energy of polarons as a function on the distance R between them 
E2(R), and to obtain the limit transition to a system, consisting 
of two noninteracting polarons at R → ∞. Models of single-center 
configuration lack this advantage.

The choice of a multi-parameter two-electron wave function in 
the form of the sum of Gaussian orbitals with exponentially cor-
related multipliers made it possible to obtain the lowest values 
for the bipolaron energy in 3D systems [53]. However, the correct 
conclusions related to the study of the spatial configuration of the 
3D-bipolaron have already been obtained using the simplest three-
parameter function with correlation factors, selected in the form 
(8), where, x1 and x2 should be replaced by the radius vectors r1
and r2 of the first and second electrons correspondingly (see eq. 
(8) and Fig. in Ref. [54]). The study of multi-parameter functional, 
using a more flexible WF, consisting of the sum of Gaussian or-
bitals with correlation multipliers, will be performed in another 
work.

In 3D-systems, a bipolaron is a spherically symmetric forma-
tion (one-center configuration). The two-center configuration cor-
responds to a local minimum, which disappears, when the corre-
lations, associated with the direct dependence of the WF on the 
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distance between the electrons are taken into account. On the con-
trary, as follows from our results, in one-dimensional systems in 
the region where the optical bipolaron exists, the lowest minimum 
corresponds to a two-center configuration. Such behavior of the 
bipolaron energy in 1D systems is connected just with the low di-
mensionality of the system under consideration.

7. Conclusion

Calculations of the coupling energy of a one-dimensional bipo-
laron with regard for one-center and two-center correlations as 
well as correlations related to the direct dependence of the bipo-
laron WF on the interelectronic distance has shown that a two-
center configuration is formed in one-dimensional systems in the 
region corresponding to an optical bipolaron (V C ≥ 2). On the 
curve for the dependence of the interaction energy of two polarons 
on the distance between them this two-center configuration corre-
sponds to a deeper minimum. A possibility of coexistence of the 
two-center and one-center bipolarons (the latter corresponding to 
a shallower minimum) requires further investigation. In the region 
of V C ≤ 1.2 the one-center bipolaron configuration becomes ener-
getically more advantageous. This region could correspond to an 
acoustic or acousto-optical bipolarons.

Acknowledgements

The work was carried out with the support from the RFBR 
grants N16-11-10163.

References

[1] S.I. Pekar, Research in Electron Theory of Crystals, United States Atomic Energy 
Commission, Washington, 1963.

[2] D. Emin, Polarons, Cambridge University Press, 2012.
[3] N.I. Kashirina, V.D. Lakhno, Mathematical Modeling of Self-Localized States in 

Condensed Media, FIZMATLIT, Moscow, 2013.
[4] N.I. Kashirina, V.D. Lakhno, Large-radius bipolaron and the polaron-polaron 

interaction, Phys. Usp. 53 (2010) 431–453, https://doi .org /10 .3367 /UFNe .0180 .
201005a .0449.

[5] N.S. Fialko, V.D. Lakhno, Nonlinear dynamics of excitations in DNA, Phys. Lett. 
A 278 (2000) 108–112, https://doi .org /10 .1016 /S0375 -9601(00 )00755 -6.

[6] T. Yamanaka, M. Dutta, M. Stroscio, Monte Carlo simulation of polaron trans-
port in DNA, J. Comput. Electron. 7 (3) (2007) 252–255, https://doi .org /10 .1007 /
s10825 -007 -0165 -3.

[7] T. Yamanaka, M. Dutta, M. Stroscio, Simulation of the charge transport in 
DNA, Phys. Status Solidi C 5 (1) (2008) 394–397, https://doi .org /10 .1002 /pssc .
200776529.

[8] V.D. Lakhno, Soliton-like solutions and electron transfer in DNA, J. Biol. Phys. 
26 (2) (2000) 133–147, https://doi .org /10 .1023 /A :1005275211233.

[9] N.I. Kashirina, V.D. Lakhno, Continual model of one-dimensional Holstein bipo-
laron in DNA, Math. Biol. Bioinform. 9 (2014) 430–437, https://doi .org /10 .
17537 /2014 .9 .430.

[10] M. Hu, K. Guo, Q. Yu, Z. Zhang, D. Liu, Polaron effects on nonlinear optical 
refractive index changes in semi-exponential quantum wells, Opt. Lett. 43 (15) 
(2018) 3550–3553, https://doi .org /10 .1364 /ol .43 .003550.

[11] R. Khordad, H. Bahramiyan, The second and third-harmonic generation of mod-
ified gaussian quantum dots under influence of polaron effects, Superlattices 
Microstruct. 76 (2014) 163–173, https://doi .org /10 .1016 /j .spmi .2014 .09 .036.

[12] R. Khordad, H. Bahramiyan, Study of non-extensive entropy of bound polaron 
in monolayer graphene, Opt. Quantum Electron. 47 (8) (2015) 2727–2745, 
https://doi .org /10 .1007 /s11082 -015 -0159 -5.

[13] R. Khordad, H.R.R. Sedehi, Study of non-extensive entropy of bound polaron in 
monolayer graphene, Indian J. Phys. 92 (8) (2018) 979–984, https://doi .org /10 .
1007 /s12648 -018 -1192 -6.

[14] P.A. Orellana, F. Domínguez-Adame, I. Gómez, M.L. Ladrón de Guevara, Trans-
port through a quantum wire with a side quantum-dot array, Phys. Rev. B 67 
(2003) 085321, https://doi .org /10 .1103 /PhysRevB .67.085321.

[15] A.W. Holleitner, R.H. Blick, A.K. Huüttel, K. Eberl, J. Kotthaus, Controlling the 
bonds of an artificial molecule, Science 297 (2002) 70–72, https://doi .org /10 .
1126 /science .1071215.

[16] N. Robertson, C. McGowan, A comparison of potential molecular wires as com-
ponents for molecular electronics, Chem. Soc. Rev. 32 (2003) 96–103, https://
doi .org /10 .1039 /B206919A.
[17] A. Schirotzek, C.H. Wu, A. Sommer, M.W. Zwierlein, Observation of Fermi po-
larons in a tunable Fermi liquid of ultracold atoms, Phys. Rev. Lett. 102 (2009) 
230402, https://doi .org /10 .1103 /PhysRevLett .102 .230402.

[18] M.J. Leskinen, O.H.T. Nummi, F. Massel, P. Törmä, Fermi-polaron-like effects in 
a one-dimensional (1d) optical lattice, New J. Phys. 12 (2010) 073044, https://
doi .org /10 .1088 /1367 -2630 /12 /7 /073044.

[19] H. Jiang, C. Zhang, X. Hu, G. Hu, S. Xie, Spin polarization of polaron in quasi-one 
dimensional organic system, Mod. Phys. Lett. B 29 (2015) 1450266, https://
doi .org /10 .1142 /S0217984914502662.

[20] L. Xiaofeng, Z. Wanjin, W. Ce, W. Ten-Chin, W. Yen, One-dimensional conduct-
ing polymer nanocomposites: synthesis, Polym. Sci. 36 (2011) 671–712, https://
doi .org /10 .1016 /j .progpolymsci .2010 .07.010.

[21] C.-S. Liu, G.B. Schuster, Base sequence effects in radical cation migration in 
duplex DNA: support for the polaron-like hopping model, J. Am. Chem. Soc. 
125 (20) (2003) 6098–6102, https://doi .org /10 .1021 /ja029333h.

[22] V.D. Lakhno, V.B. Sultanov, On the possibility of bipolaronic states in DNA, 
Biofizika 56 (2011) 210–213, https://elibrary.ru /item .asp ?id =17036557.

[23] V.D. Lakhno, V.B. Sultanov, Possibility of a (bi)polaron high-temperature su-
perconductivity in poly a/poly t DNA duplexes, J. Appl. Phys. 112 (6) (2012) 
064701, https://doi .org /10 .1063 /1.4752875.

[24] M. Gratzel, Solar energy conversion by dye-sensitized photovoltaic cells, Inorg. 
Chem. 44 (2005) 6841–6851, https://doi .org /10 .1021 /ic0508371.

[25] H.A. Wagenknecht (Ed.), Charge Transfer in DNA: From Mechanism to Applica-
tion, Wiley VCH, New York, 2005.

[26] G. Malliaras, R. Friend, An organic electronics primer, Phys. Today 58 (2005) 
53–58, https://doi .org /10 .1063 /1.1995748.

[27] P. Gkoupidenis, S. Rezaei-Mazinani, C.M. Proctor, E. Ismailova, G.G. Malliaras, 
Orientation selectivity with organic photodetectors and an organic elec-
trochemical transistor, AIP Adv. 6 (2016) 111307, https://doi .org /10 .1063 /1.
4967947.

[28] E.A. Oenhausser, R. Rinaldi, Nanobioelectronics for Electronics, Biology and 
Medicine, Springer, Berlin, 2009.

[29] K. Keren, M. Krueger, R. Gilad, G. Ben-Yoseph, U. Sivan, E. Braun, Sequence-
specific molecular lithography on single DNA molecules, Science 297 (2002) 
72–75, https://doi .org /10 .1126 /science .1071247.

[30] H.C. Wohlgamuth, M.A. McWilliams, J.D. Slinker, DNA as a molecular wire: 
distance and sequence dependence, Anal. Chem. 85 (2013) 8634, https://
doi .org /10 .1021 /ac401229q.

[31] A. Mahmoud, P. Lugli, Toward circuit modeling of molecular devices, IEEE 
Trans. Nanotechnol. 13 (2014) 510–516, https://doi .org /10 .1109 /TNANO .2014 .
2308257.

[32] A. Mahmoud, P. Lugli, Atomistic study on dithiolated oligo-phenylenevinylene 
gated device, J. Appl. Phys. 116 (2014) 204504, https://doi .org /10 .1063 /1.
4902861.

[33] E.I. Rashba, Theory of strong interaction of electron excitations with crystal lat-
tice vibrations in molecular crystals, Sov. Phys. Opt. Spektrosk. II (1957) 88–98.

[34] T. Holstein, Studies of polaron motion. Part I. The molecular-crystal model, Ann. 
Phys. 8 (1959) 325–342, https://doi .org /10 .1016 /0003 -4916(59 )90002 -8.

[35] D. Emin, J. Ye, C.L. Beckel, Electron-correlation effects in one-dimensional large-
bipolaron formation, Phys. Rev. B 46 (1992) 10710–10720, https://doi .org /10 .
1103 /PhysRevB .46 .10710.

[36] N.I. Kashirina, V.D. Lakhno, Bipolaron in anisotropic crystals (arbitrary cou-
pling), Math. Biol. Bioinform. 10 (2015) 283–293, https://doi .org /10 .17537 /
2015 .10 .283.

[37] A.J. Storm, J. van Noort, S. de Vries, C. Dekker, Insulating behavior for DNA 
molecules between nanoelectrodes at the 100 nm length scale, Appl. Phys. Lett. 
79 (2001) 3881–3883, https://doi .org /10 .1063 /1.1421086.

[38] P.J. de Pablo, F. Moreno-Herrero, J. Colchero, J.G. Herrero, P. Herrero, A.M. Baró, 
P. Ordejón, J.M. Soler, E. Artacho, Absence of dc-conductivity in λ-DNA, Phys. 
Rev. Lett. 85 (2000) 4992–4995, https://doi .org /10 .1103 /PhysRevLett .85 .4992.

[39] D. Porath, A. Bezryadin, S. de Vries, C. Dekker, Direct measurement of electrical 
transport through DNA molecules, Nature 403 (2000) 635–638, https://doi .org /
10 .1038 /35001029.

[40] L. Cai, H. Tabata, T. Kawai, Self-assembled DNA networks and their electrical 
conductivity, Appl. Phys. Lett. 77 (2000) 3105–3106, https://doi .org /10 .1063 /1.
1323546.

[41] K.H. Yoo, D.H. Ha, J.O. Lee, J.W. Park, J. Kim, J.J. Kim, H.Y. Lee, T. Kawai, H.Y. 
Choi, Electrical conduction through poly(dA)-poly(dT) and poly(dG)-poly(dC) 
DNA molecules, Phys. Rev. Lett. 87 (2001) 198102, https://doi .org /10 .1103 /
PhysRevLett .87.198102.

[42] H.W. Fink, C. Schönenberger, Electrical conduction through DNA molecules, Na-
ture 398 (1999) 407–410, https://doi .org /10 .1038 /18855.

[43] Y. Okahata, T. Kobayashi, K. Tanaka, M. Shimomura, Anisotropic electric con-
ductivity in an aligned DNA cast fil, J. Am. Chem. Soc. 120 (1998) 6165–6166, 
https://doi .org /10 .1021 /ja980165w.

[44] A.Y. Kasumov, M. Kociak, S. Guéron, B. Reulet, V.T. Volkov, D.V. Klinov, H. 
Bouchiat, Proximity-induced superconductivity in DNA, Science 291 (2001) 
280–282, https://doi .org /10 .1126 /science .291.5502 .280.

[45] V.D. Lakhno, A translation invariant bipolaron in the Holstein model and super-
conductivity, SpringerPlus 5 (2016) 1277, https://doi .org /10 .1186 /s40064 -016 -
2975 -x.

http://refhub.elsevier.com/S0375-9601(19)30870-9/bib50656B61723633s1
http://refhub.elsevier.com/S0375-9601(19)30870-9/bib50656B61723633s1
http://refhub.elsevier.com/S0375-9601(19)30870-9/bib456D696E32303132s1
http://refhub.elsevier.com/S0375-9601(19)30870-9/bib4B4C32303133s1
http://refhub.elsevier.com/S0375-9601(19)30870-9/bib4B4C32303133s1
https://doi.org/10.3367/UFNe.0180.201005a.0449
https://doi.org/10.1016/S0375-9601(00)00755-6
https://doi.org/10.1007/s10825-007-0165-3
https://doi.org/10.1002/pssc.200776529
https://doi.org/10.1023/A:1005275211233
https://doi.org/10.17537/2014.9.430
https://doi.org/10.1364/ol.43.003550
https://doi.org/10.1016/j.spmi.2014.09.036
https://doi.org/10.1007/s11082-015-0159-5
https://doi.org/10.1007/s12648-018-1192-6
https://doi.org/10.1103/PhysRevB.67.085321
https://doi.org/10.1126/science.1071215
https://doi.org/10.1039/B206919A
https://doi.org/10.1103/PhysRevLett.102.230402
https://doi.org/10.1088/1367-2630/12/7/073044
https://doi.org/10.1142/S0217984914502662
https://doi.org/10.1016/j.progpolymsci.2010.07.010
https://doi.org/10.1021/ja029333h
https://elibrary.ru/item.asp?id=17036557
https://doi.org/10.1063/1.4752875
https://doi.org/10.1021/ic0508371
http://refhub.elsevier.com/S0375-9601(19)30870-9/bib576167656E6B6E65636832303035s1
http://refhub.elsevier.com/S0375-9601(19)30870-9/bib576167656E6B6E65636832303035s1
https://doi.org/10.1063/1.1995748
https://doi.org/10.1063/1.4967947
http://refhub.elsevier.com/S0375-9601(19)30870-9/bib4F656E6861757373657232303039s1
http://refhub.elsevier.com/S0375-9601(19)30870-9/bib4F656E6861757373657232303039s1
https://doi.org/10.1126/science.1071247
https://doi.org/10.1021/ac401229q
https://doi.org/10.1109/TNANO.2014.2308257
https://doi.org/10.1063/1.4902861
http://refhub.elsevier.com/S0375-9601(19)30870-9/bib52617368626131393537s1
http://refhub.elsevier.com/S0375-9601(19)30870-9/bib52617368626131393537s1
https://doi.org/10.1016/0003-4916(59)90002-8
https://doi.org/10.1103/PhysRevB.46.10710
https://doi.org/10.17537/2015.10.283
https://doi.org/10.1063/1.1421086
https://doi.org/10.1103/PhysRevLett.85.4992
https://doi.org/10.1038/35001029
https://doi.org/10.1063/1.1323546
https://doi.org/10.1103/PhysRevLett.87.198102
https://doi.org/10.1038/18855
https://doi.org/10.1021/ja980165w
https://doi.org/10.1126/science.291.5502.280
https://doi.org/10.1186/s40064-016-2975-x
https://doi.org/10.3367/UFNe.0180.201005a.0449
https://doi.org/10.1007/s10825-007-0165-3
https://doi.org/10.1002/pssc.200776529
https://doi.org/10.17537/2014.9.430
https://doi.org/10.1007/s12648-018-1192-6
https://doi.org/10.1126/science.1071215
https://doi.org/10.1039/B206919A
https://doi.org/10.1088/1367-2630/12/7/073044
https://doi.org/10.1142/S0217984914502662
https://doi.org/10.1016/j.progpolymsci.2010.07.010
https://doi.org/10.1063/1.4967947
https://doi.org/10.1021/ac401229q
https://doi.org/10.1109/TNANO.2014.2308257
https://doi.org/10.1063/1.4902861
https://doi.org/10.1103/PhysRevB.46.10710
https://doi.org/10.17537/2015.10.283
https://doi.org/10.1038/35001029
https://doi.org/10.1063/1.1323546
https://doi.org/10.1103/PhysRevLett.87.198102
https://doi.org/10.1186/s40064-016-2975-x


8 N.I. Kashirina, V.D. Lakhno / Physics Letters A 383 (2019) 126003
[46] G.P. Triberis, M. Dimakogianni, DNA in the material world: electrical properties 
and nano-applications, Recent Pat. Nanotechnol. 3 (2009) 135–153, https://doi .
org /10 .2174 /187221009788490040.

[47] S. Abdalla, Electrical conduction through DNA molecule, Prog. Biophys. Mol. 
Biol. 106 (2011) 485–497, https://doi .org /10 .1016 /j .pbiomolbio .2011.03 .001.

[48] V.D. Lakhno, DNA nanobioelectronics, Int. J. Quant. Chem. 108 (2008) 
1970–1981, https://doi .org /10 .1002 /qua .21717.

[49] J.T. Devreese, A.S. Alexandrov, Frohlich polaron and bipolaron: recent develop-
ments, Rep. Prog. Phys. 72 (2009) 066501, http://stacks .iop .org /0034 -4885 /72 /
i =6 /a =066501.

[50] V.D. Lakhno, Peculiarities in the concentration dependence of the supercon-
ducting transition temperature in the bipolaron theory of cooper pairs, Mod. 
Phys. Lett. B 31 (2017) 1750125, https://doi .org /10 .1142 /S0217984917501251.
[51] F.M. Peeters, M.A. Smondyrev, Exact and approximate results for the polaron in 
one dimension, Phys. Rev. B 43 (6) (1991) 4920–4924, https://doi .org /10 .1103 /
physrevb .43 .4920.

[52] N.I. Kashirina, V.D. Lakhno, V.V. Sychyov, Polaron effects and electron correla-
tions in two-electron systems: arbitrary value of electron-phonon interaction, 
Phys. Rev. B. 71 (2005) 134301, https://doi .org /10 .1103 /PhysRevB .71.134301.

[53] N.I. Kashirina, V.D. Lakhno, V.V. Sychyov, Electron correlations and 
spatial configuration of the bipolaron, Phys. Status Solidi B 234 (2) 
(2002) 563–570, https://doi .org /10 .1002 /1521 -3951(200211 )234 :2<563 ::
AID -PSSB563 >3 .0 .CO ;2 -E.

[54] N.I. Kashirina, V.D. Lakhno, Spatial configuration of the bipolaron and the 
virial theorem, Phys. Solid State 50 (1) (2008) 9–15, https://doi .org /10 .1134 /
s1063783408010034.

https://doi.org/10.2174/187221009788490040
https://doi.org/10.1016/j.pbiomolbio.2011.03.001
https://doi.org/10.1002/qua.21717
http://stacks.iop.org/0034-4885/72/i=6/a=066501
https://doi.org/10.1142/S0217984917501251
https://doi.org/10.1103/physrevb.43.4920
https://doi.org/10.1103/PhysRevB.71.134301
https://doi.org/10.1002/1521-3951(200211)234:2<563::AID-PSSB563>3.0.CO;2-E
https://doi.org/10.1134/s1063783408010034
https://doi.org/10.2174/187221009788490040
http://stacks.iop.org/0034-4885/72/i=6/a=066501
https://doi.org/10.1103/physrevb.43.4920
https://doi.org/10.1002/1521-3951(200211)234:2<563::AID-PSSB563>3.0.CO;2-E
https://doi.org/10.1134/s1063783408010034

	Correlation effects and conﬁguration of a one-dimensional bipolaron
	1 Introduction
	2 Effective functional of the ground state of a one-dimensional polaron
	3 Effective functional of the ground state of a one-dimensional bipolaron
	4 Derivation of analytical expressions of the bipolaron functional
	5 Results of numerical calculations
	6 Results and discussion
	7 Conclusion
	Acknowledgements
	References


