Skip to content

SKMS

Laboratory of Quantum-Mechanical Systems

  • Main
  • News
  • Investigations
  • Publications
    • Publications
    • Monographs
    • Proceedings
    • Manuals
  • Staff
    • Full list
    • Lakhno Victor Dmitrievich
    • Fialko Nadezhda Sergeevna
    • Gabdoulline Razif Rifovich
    • Kudryashova Olga Vladimirovna
    • Molchanova Dina Al’bertovna
    • Shigaev Aleksey Sergeevich
    • Sobolev Egor Vasil’evich
    • Tikhonov Dmitry Anatolievich
    • Former employees
  • History
    • Ponomarev Oleg Aleksandrovich
  • Русский
  • English
  • Home
  • Publications
  • Monographs
  • Computers and supercomputers in biology

Computers and supercomputers in biology

 

Computers and supercomputers in biology

Computers and supercomputers in biology
ed. V.D. Lakhno and M.N. Ustinin
Moscow-Izhevsk: Institute of computer investigations, 2002, 528p.
( in Russian )

 

Contents

PART 1. STRUCTURE AND PHYSICAL PROPERTIES OF DNA AND PROTEINS, CHARGE TRANSFER IN DNA, PHOTOSYNTHETIC REACTION CENTER 13
Preface to part 1 15
CHAPTER 1. V.D. Lakhno. Computational problems of computational biology 18
   1.1 Introduction 18
   1.2. Problems of computational biology 18
   1.3. Primary structures 20
   1.4. X-rays proyein analysis 24
   1.5. Protein folding 26
   1.6. Modeling of the structure and dynamics of macromolecules 27
   1.7. Applied problems of computational biology 29
   References 33
CHAPTER 2. A.A. Zimin, V.D. Lakhno, N.N. Nazipova. Biological macromolecules: structure, shapes and functions 35
   2.1. Introduction 35
   2.2. Nucleic acids (DNA and RNA) 35
   2.3. Proteins 40
   2.4. Spatial structures of biopolymer molecules and methods for their investigation 44
   2.5. Methods for revealing primary structures of DNA, RNA and protein molecules 47
   References 53
CHAPTER 3. V.Yu. Lunin. Revealing of the spatial structure of biological macromolecules 55
   3.1. Introduction 55
      3.1.1. Fundamentals of the X-ray analysis 55
      3.1.2. Present-days problems of macromolecular crystallography 58
      3.1.3. Main stages of the X-ray analysis 59
      3.1.4. Different levels of the description of the protein molecule structure 60
      3.1.5. Main stages of decoding the structure from the X-ray scattering data 62
      3.1.6. How to “see” the functions of three variables 65
      3.1.7. Phase problem of X-ray analysis 67
   3.2. Phase problem 70
      3.2.1. Terminology and designations 72
      3.2.2. Additional information on the object under study 75
   3.3. Direct phasing at low resolution 86
      3.3.1. Main definitions 87
      3.3.2. Procedure of ab-initio phasing 88
      3.3.3. The use of Fourier synthsis histograms 91
      3.3.4. Phasing on the basis of coherence 96
      3.3.5. Phasing on the basis of likelihood minimization 101
      3.3.6. The use of pseudo-models 103
      3.3.7. Combination of methods. Determinig of low-angular phasis for a ribosomal particle T50S 106
      3.3.8. Revealing of the structure of a low-density lipoprotein particle (LDL) 107
   3.4. Methods for electron density modication 108
      3.4.1. Presentation of limitations as a functional equation 109
      3.4.2. Structure factor equations 111
      3.4.3. Iteration procedure of phase refining 112
      3.4.4. Phasing as a minimization problem 113
   3.5. N.L. Lunina. The use of FAM method 114
      3.5.1. Fundamentals 114
      3.5.2. Description of FAM method and results of its testing 117
   References 130
CHAPTER 4. V.D. Lakhno. Dynamics of hole transfer in nucleatide sequences 137
   4.1. Introduction 137
   4.2. Quantum-mechanical model 139
   4.3. Model parameters 143
   4.4. Hole transfer from the state close to a relaxed one 146
   4.5. Hole transfer from a nonrelaxed state 155
   4.6. Comparison of the theory with the experiment 157
   4.7. Oscillating nature of charge transfer in DNA 161
   4.8. Generalization of the model 164
   4.9. Comparison with ither approaches 165
   4.10. Horizontes of the theory development 167
   References 167
CHAPTER 5. V.D. Lakhno, N.S. Fialko. Long-range charge transfer in DNA 172
   5.1. Introduction 172
   5.2. Mathematical model 174
   5.3. Some particular cases 176
   5.4. System under consideration 179
   5.5. Stationary solitary wave 181
   5.6. Moving soliton 182
   5.7. Modelling of transfer in a homogeneous chain 184
   5.8. Modelling of a donor and an acceptor 186
   5.9. Discussing of results 191
   References 193
CHAPTER 6. V.D. Lakhno. Modelling of primary processess of charge transfer in a photosynthetic reaction center 195
   6.1. Introduction 195
   6.2. Primary processess of charge transfer in photosynthetic reaction center 196
   6.3. Mathematical model 197
   6.4. Electron transfere parameters 199
   6.5. Results of numerical calculations 200
   6.6. Possibilities of more comprehensive consideration of structural and dynamical properties of a phtoreaction center 202
   6.7. Further discussioon and comparison with other approaches 205
   6.8. Conclusive remarks 206
   References 206
CHAPTER 7. D.A. Tikhonov. Method of integral equations of the theory of liquids for the study of a macromolecule hydrotation 209
   7.1. Introduction 209
   7.2. RISM equations for the study of a macromolecule solvation (hydrotation) 211
   7.3. Numerical scheme 213
   7.4. Further approximations in the RISM method which make it more efficeint as to the computational process 221
   7.5. Algorithm for the solution of RISM equations by Newton-Krylov method 222
   7.6. Results of calculations 225
   7.7. Conclusions 229
   Appendix. Nonstationary iteration methods for the solution of SLA equations “Krylov’s subspace methods” 230
   References 233
CHAPTER 8. A.V. Teplukhin, Yu.S. Lemesheva. The study of the structure of an aqueous shell of two-helical B-DNA poly(dA):poly(dT) by parallel processing 234
   8.1. Introduction 234
   8.2. State of the problem 235
   8.3. Methods and algorithms for computer experiments 236
   8.4. Results of investigations 237
   References 239
Colored illustrations
PART 2. BIOINFORMATIC, COMPUTATIONAL BIOLOGY AND BIOMEDICINE 241
Preface to part 2

 

243
CHAPTER 1. Yu.E. Elkin. Excitation waves in biological systems and kinematic approach to their study 247
   1.1. Introduction: autoscillations and autowaves in nature 247
   1.2. Autowave imagein a plain and nature heart functioning 250
      1.2.1. Pacemaker 250
      1.2.2. Two pacemaker 250
      1.2.3. Spiral wave 251
   1.3. On mathematical approaches to the study of autowaves 253
   1.4. Kinematic approach 255
      1.4.1. Geometrical description of excitation waves 255
      1.4.2. On the exact solution of stationary kinematic equations 260
      1.4.3. Some results of the use of geometrical methods 263
      1.4.4. Comparison of althernative geometrical approaches 265
      1.4.5. On extending the generalizatied kinematic to the three-dimensional case 268
   1.5. Conclusions 269
   References 270
CHAPTER 2. A.R. Skovoroda. Early noninvasive diagnostic of tissue pathologies as a problem of computational mathematics 274
   2.1. Introduction 274
   2.2. Main relations, mechanical characteristics and experimental data 275
   2.3. Reconstrunction of the displcement modules of the objec under study from the data on its deformed state 283
   2.4. Conclusive remarks 292
A.N. Klishko. Methods of quatitatie estimstion of elastic chracteristics of soft biological tissues 294
   2.5. Estimation of tissue elastic properties by pressing in a stamp on the basis of testing postoperative materials 294
   2.6. Resonance method of determining the displacement modules of the elatic layer 299
      2.6.1. The problem of the dynamical equilibrium of external forces 299
      2.6.2. The problem of the dynamicalequilibrium of an elastic layer upon axisymmetric loading of one of its boundaries 301
      2.6.3. Determining of resonance frequencies of a their plate lying on an elastic layer and loaded by a periodical external force 309
   References 313
CHAPTER 3. M.N. Ustinin, S.A. Makhortykh, A.M. Molchanov, M.M. Olshevets, A.N. Pankratov, N.M. Pankratova, V.I. Sukharev, V.V. Sychyov. The problems of the analysis of magnetic encephalography 327
   3.1. Introduction 327
   3.2. Modelling of the biomagnetic activity of the brain 331
   3.3. Solution of the direct and inverse problems of magntic encephalography 338
      3.3.1. Solution of the inverse problem 339
      3.3.2. Momentum fitting procedure 340
      3.3.3. Fitting of the dipole amplitude 341
   3.4. Study of the dynamical characteristic of the magnetic encephalography data 342
      3.4.1. Calculation of the correlation dimensions of a signal 342
      3.4.2. Algorithm for calculation of the attractor dimensions 345
   3.5. Conclusions 347
   References 348
CHAPTER 4. L.G. Khanina, A.S. Komarov, V.E. Smirnov, M.V. Bobrovskii, I.E.Sizov, E.M.Glukhova. Computational ecology 350
   4.1. Introduction. Computational ecology: definition, main problem 350
   4.2. Databases 351
   4.3. Dynamical modelling 356
      4.3.1. Methodical aspects of the development of imitation models of complicated systems 356
      4.3.2. Modellimg of forest ecosystem 359
      4.3.3. Mathematical plant demography 365
   4.4. Multidimensional analysis of ecological data 371
      4.4.1. Main methods of the multidimensional analysis of ecological data 371
      4.4.2. Classification of flora descriptions 372
      4.4.3. Singling out of functional groups of species 374
   4.5. Spatial anlysis of ecological data 376
      4.5.1. Main methods for statial analysis of ecolgical data 376
      4.5.2. Use of GIS-technologies to assess the vegetation biodiversity 379
   4.6. Visualization 381
   4.7. Conclusions 383
   References 383
CHAPTER 5. N.N. Nazipova, M.N. Ustinin. Solution of the problem of decoding genetic information contained in biological sequences 392
   5.1. Introduction 392
   5.2. Recognition of protein-encoding regions on an extended genetic sequence 396
      5.2.1. statement of the problem 396
      5.2.2. Methods for recognition of encoding regions with the use of statistical characteristics of the encoding site of genomes 397
      5.2.3. Encoding measures 401
      5.2.4. Efficiency of encoding measures 412
      5.2.5. Mathematical methods for gene recognition used in modern software packages 413
   5.3. Attributing a function to a gene 416
   5.4. Conclusions 419
   References 422
CHAPTER 6. T.V. Astakhova, N.V. Oleinikova, M.A. Roytberg. Comparative analysis of information biopolymers 433
   6.1. Introduction: Development of methods for biopolymer analysis 433
   6.2. Another approach to the problem of aminoacid sequence alignment. Patero-optimal alignment 439
   6.3. Recognition ot protein-encoding region in DNA sequence is an important problem of the analysis of the biological sequences 442
   6.4. Present-day problems of the comparative analysis of biological sequences, prerequisites for the use of parallel processing 447
   6.5. The study of the certanty of the aminoacid sequence alignment 449
      6.5.1. The soutce of structurally adequate alignment 449
      6.5.2. The measure of sequence similarity 450
      6.5.3. The measure of alignment similarity. The notion of an “island” 451
      6.5.4. The dependence of the extent of structural and sequential alignmetn on the extent of similarity of the studied proteins 452
      6.5.5. Detailed study of alignments. Guessed “islans” 453
   References 455
CHAPTER 7. M.N. Ustinin, I.A. Nikonov, M.M. Olshevets. Digital diagnostic and telemedicine 458
   7.1. Introduction 458
   7.2. Digital roentgenography 459
   7.3. Software for the digital X-ray system 462
   7.4. Main operations of digital X-ray image processing 465
   7.5. Approximation of digital X-ray images in splash bases 470
   References 474
CHAPTER 8. S.V. Filippov, E.V. Sobolev. The use of technologies of professional computer graphics for visualization of investigation results 476
   8.1. Introduction 476
   8.2. Composing 477
      8.2.1. Adobe After Effects® 478
      8.2.2. Discreet Combustion® 486
   8.3. 3D-modelling and animation 490
   8.4. Rendering 495
   8.5. Conclusions 496
   References 497
Glossary

 

498

Поделиться ссылкой:

  • Facebook
  • X
  • The book HIGH-TEMPERATURE SUPERCONDUCTIVITY. BIPOLARON MECHANISM

Copyright © 2021 SKMS. IMPB RAS

Theme: Oceanly by ScriptsTown

← Spin wave amplification: electron mechanisms ← Proceedings